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During the winter 1679, R. Hooke challenged I. Newton to predict the dynamics of an object
submitted to a constant radial force. This correspondence made a strong impact on I. Newton,
who wrote four years later “De Motu”, the real ancestor of “The Principia”, published in 1687.
R. Hooke’s problem can be physically linked to the dynamics of a sphere sliding on an inverted
cone due to gravitational effects. If the symmetry axis of the cone is parallel to the gravitational
field, the ball executes stable precessions. Breaking this symmetry induces the appearance of
chaotic motions. After having derived the equations related to the position of the sphere, we
analyze its dynamics, and we perform an approximated Floquet analysis that is compared to
our numerical results.

Keywords : Three-body problem; inverted cone; period doubling; chaos; Floquet analysis.

1. Robert Hooke, Isaac Newton and
the Inverted Cone Experiment

In spite of his essential contribution to the initial
development of the science of movement, Robert
Hooke is not any more known today by physicists
than as the inventor of the law of Hooke which gives
the back strength of a spring according to its dila-
tion or to its contraction. Hundreds of experiments
that he made in front of the members of the English
Royal Society in London, the invention of numer-
ous devices of physics, his extraordinary intuition
and his work of architect in the reconstruction of
London after the big fire of 1666, beside his friend

Christopher Wren, give him a status comparable to
that of Leonardo da Vinci [Diehl, 1952; Gal, 1996;
Nauenberg, 2005a, 2005b]. It was on 23 May 1666,
on the occasion of one of the numerous experimental
demonstrations that he made in the “Royal Society”
that R. Hooke proposed his theory of the plane-
tary movements: “This inflexion of a direct motion
into a curve by a supervening attractive principle.”
His experiment used a pendulum constituted by a
weight fixed at the end of a rope. By giving to the
mass an initial velocity outside of the vertical plan
formed by the rope and the vertical plumb line,
he observed a pendular movement (not planar) the

3435

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
00

9.
19

:3
43

5-
34

44
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 A

U
ST

R
A

L
IA

N
 N

A
T

IO
N

A
L

 U
N

IV
E

R
SI

T
Y

 o
n 

01
/2

7/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



November 12, 2009 16:14 02488

3436 M. Argentina et al.

projection of which on the horizontal plan described
orbital movements which never passed by the cen-
ter. According to the initial velocity which he gave
to the mass, he reported for circular movements,
elliptic movements and even movements on ellipses
the main line of which turns slowly. As Galilee,
he decreased the effect of the friction by using an
important mass. He noticed that the acceleration of
the mobile constituted by the projection of the mass
on the horizontal plane is always steered towards
the point upright by the mooring fixation of the
rope. It is thus all about a central acceleration. We
have here a mobile, the projection of the mass on
the horizontal plane, subjected to an acceleration
steered towards a fixed center and the movement of
which is similar to that of a planet orbiting around
the Sun. This experience marks the birth of “the
celestial mechanics”. “The second cause of inflect-
ing a direct motion into a curve may be from an
attractive body placed in the center; whereby it con-
tinuously endeavors to attract or draw it to itself.
For if such a principle to be supposed, all the phe-
nomena of the planets seem possible to be explained
by the common principle of mechanic motions; and
possibly by the prosecuting [of] this speculation may
give us a true hypothesis of their motions, and from
some few observations, their motions may be so far
brought to a certainty, that we may be able to cal-
culate them to the greatest exactness and certainty
that can be desired.

This inflexion of a direct motion into a curve by
a supervening attractive principle I shall endeavor
to explicate from some experiments with a pendulous
body: not that I suppose the attraction of the sun to
be exactly according to the same degrees, as they are
in a pendulum . . . ”

In other words, R. Hooke suggested compos-
ing a uniform rectilinear movement which he called
“direct movement” with a movement accelerated
towards a center to explain the orbital movements
of the planets around the Sun [Gal, 1996; Nauen-
berg, 2005a, 2005b].

London, in 1670: on the occasion of a seminar
in the “Royal Society”, R. Hooke exposed again
his theory of the orbital movement and expressed
the principle of universal gravitation! “First, thats
all Cœlestial Bodies whatsoever, have an attraction
or a gravitating power towards their own Centers,
whereby they attract not only their own parts, and
keep them from flying from them, as we may observe
the Earth to do, but that they do also attract all the
other Cœlestial Bodies that are within the sphere

of their activity; and consequently that not only the
Sun and Moon have influence upon the Body and
motion of the Earth, and the Earth upon them. . . ”

It is remarkable to note that we find in these
texts two important ideas which we attribute
generally to Isaac Newton: the Moon which “fall”
permanently on the Earth by composing its uni-
form rectilinear inertial movement and its move-
ment accelerated towards the center of the Earth
and the universal gravitation which identifies the
cause of the movements of the graves and that of
celestial bodies in all the Universe.

In winter, 1679, Hooke became then secretary
of the English Royal Society and he introduced a
correspondence with Isaac Newton. His intention
was sincerely to interest Newton in the works of
the Academy. He ended however his first letter by
asking to Newton for his opinion on his past works
of celestial mechanics.

R. Hooke to I. Newton: Letter of November
24th, 1679:

“From my own part I shall take it as a great
favor if you shall please to communicate by Letter
your objections against any hypothesis or opinion
of mine. And particularly if you will let me know
your thoughts of that of compounding the celes-
tial motions of planets of a direct motion by the
tangent & an attractive motion toward the central
body”

In his answer, Newton declined the offer of
Hooke, pleading that he lost any interest for the
questions of natural philosophy. At that time he was
very busy by his alchemical activities. He however
recognized not to have heard about the theory of
Hooke concerning the global movements.

I. Newton to R. Hooke: Letter of November
28th, 1679:

“. . . I did not before the receipt of your last letter
[sent four days earlier], so much as heare ([that] I
remember) of your hypotheses of compounding the
celestial motion of the Planets, of a direct motion
by the tan[gen]t to the curve. . . ”

A dialogue was established between both schol-
ars. In his answer, Newton, proposed an experiment
to demonstrate the rotation of the Earth and to this
occasion, it came back to the problem of Galilee
from that the movement of a body which could cross
the Earth without meeting of obstacles.

As it was already mentioned, for Galilee
the body released from the rest made periodic
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movements to go and of return between the
antipodes. Newton corrected then the proposition
of Galilee by incorporating the effect of rotation of
the Earth. The defenders of an immovable Earth
argued that if the Earth turned from West to East,
a body thrown upward would fall on the West of its
initial position, there exactly where the Earth was
when the body was thrown. Newton asserted on the
contrary that if we release a body at the summit of
a tower, because of the rotation of the Earth, it will
be diverted in fact eastward. Although the descrip-
tion of the movement which follows is purely aca-
demic, because it corresponds to the movement of
the body inside the Earth, it is particularly interest-
ing because it informs us exactly about the under-
standing that Newton had in 1679 of the orbital
movements. We remember that young Newton, at
the age of 23, had taken refuge in his family manor
house to Woolsthorpe, to flee the plague which
raged in the English cities, had developed his dif-
ferential and complete calculus under a very intu-
itive shape in direct relation with the analysis of
the movement; the famous calculation of the “flux-
ions”. He had become in some years one of the
best mathematicians in Europe! He had also begun
a reflection on the orbital movements, but which
had stayed without continuation. It was this cor-
respondence of the winter 79–80 with Hooke that
renewed Newton’s interest in these questions. The
trajectory-spiral which he proposed in his letter was
not correct.

The movement of the body that follows it, ends
in a finite time at the center of the Earth. R. Hooke,
as secretary of Royal Society, dedicated a session to
the critical analysis of Newton’s proposition. He rec-
ognized the abnormality to the east of trajectories,
but proposed the movement of “sorts of ellipses”
instead of spirals.

R. Hooke to I. Newton: Letter of December
9th, 1679:

“. . . you seem to suppose it to descend by . . . a kind
of spiral which after some few revolutions leave it
in the center of the earth . . .my theory of circular
motion make me suppose it would be very differing
and nothing at all akin to a spiral but rather a kind
of ellipsoid.” Newton hardly appreciated to have his
errors corrected. In his answer to Hooke, he made
a sensational demonstration of his mathematical
superiority. He knew how to calculate the trajecto-
ries of mobiles subjected to a central acceleration.

Fig. 1. Figure drawn by I. Newton for the motion of a pro-
jectile falling inside the earth without friction.

He dealt in particular with a constant central accel-
eration there.

Always about the trajectory inside the Earth.

I. Newton to R. Hooke: Letter of December
13th, 1679:

“. . . and also that if its gravity be supposed uniform,
it will not descend in a spiral to the very center
but circulate with an alternate ascent and descent
made by its vis centriguga and gravity alternately
balancing one another. Yet I imagine the body will
not describe an ellipsoid but rather suit a figure as
is represented . . . ”

As in 1665, Newton interpreted in an erroneous
way the orbital movement as a balance between
gravity and centrifugal force, but he knew how to
calculate the correct trajectory by a rough method.
Hooke recognized in it the movement of a ball on a
concave conical surface. Once again this exchange
was very instructive as regards to the state of mind
of Newton. It was manifestly capable of calculating
correctly the trajectory, but did not still adhere to
the theory of Hooke of the composition of the iner-
tial movement and the central attraction [Nauen-
berg 2005a, 2005b].

R. Hooke to I. Newton: Letter of January
6th, 1680:

“Your calculation of the curve by a body attracted
by an æquall power at all Distances from the center
such that of a ball Rolling in an inverted Concave
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Fig. 2. Newton diagram in his letter to Hooke on 13 Decem-
ber 1679.

Cone is right, and the two auges[apsides] will not
unite by about a third of a Revolution.

Newton did not answer any more the letters of
Hooke. This latter convinced Newton that he pos-
sessed “an excellent method” to calculate the tra-
jectories of bodies under the influence of a central
acceleration, suggesting to him to use it to discover
the property of the curve produced by a central
acceleration which decreased as the square of the
distance in the center!

R. Hooke to I. Newton: Letter of January
17th, 1680:

“. . . it now remains to know the proprieties of a
curve Line (not Circular nor concentrical) made by
a central attractive power which make the velocity
of Descent from the tangent line or equal straight
motion at all Distances in a duplicate proportion
to the Distances Reciprocally taken. I doubt not but
that by your excellent method you will easily find
out what Curve must be, and its proprieties, and
suggest a Physical Reason of this proportion”.

The correspondence between Hooke and New-
ton of the winter 79–80 played a considerable role in
the development of the mechanics. It demonstrated
with strength the power of the differential calculus
that Newton invented when he was a young student

in Cambridge. Indeed Newton knew how to resolve
the differential equations of the movement by an
approached method, what we name numerical algo-
rithm today, without possessing the correct inter-
pretation of these solutions.

This “collaboration” with R. Hooke led Newton
four years later, in 1684, to submit to the “Royal
Society” a manuscript entitled “De Motu”, real
ancestor of “The Principia”, published in 1687. It is
a work of science that is certainly the most quoted
and nevertheless certainly one of the least read,
since much of its reading is difficult. The “Prin-
cipia” presents a revolutionary vision of the move-
ment and unify terrestrial and celestial movements.
The influence of Hooke, which Newton did not rec-
ognize, is indisputable. His idea of orbital dynam-
ics, which composes “direct movement and central
attraction” appeared in Proposition I of the book I
of “Principia”, an actual angular stone of the work.
In this proposition, Newton demonstrated that the
composition of a uniform rectilinear movement and
an arbitrary central acceleration leads to an orbital
movement which obeys the second law of Kepler.

2. A Sliding Ball Over an Inverted
Cone as a Three-Body Problem

Motivated by these historical facts, we were inter-
ested in R. Hooke’s seminal experiment of a body
submitted to a constant force. We present our
understanding of the dynamics of a ball sliding on
an inverted cone whose axis of symmetry is tilted.

2.1. Derivation of the equations for
the dynamics

We assume a rigid sphere located at the coordinates
(X,Y,Z) that is sliding over an inverted concave
cone defined as in Figs. 3 and 4:

Z = tan α
√

ε2 + |A|2,
where we use the complex notation A = X + iY ,
because of the symmetry of the surface. The param-
eter ε measures the radius of curvature near the ori-
gin, and our choice of introducing this length will
become evident later in the text. Far away from the
origin, the surface tends to be a cone. Following R.
Hooke’s experiment, we impose a tilt on the axis of
symmetry of the cone. In order to keep the descrip-
tion as simple as possible, we then choose a gravi-
tational field that is tilted with an angle θ, in the
direction x, with respect to the z axis, as in Fig. 4.
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Fig. 3. A sliding ball is moving over an inverted cone
designed and constructed by Robert Magnan at Lycée des
Eucalyptus.

In order to derive the equations of movement of
the ball, we define a Lagrangian L whose associated
action is minimized. We write:

L =
m

2
(Ẋ2 + Ẏ 2 + Ż2) − mg(sin θX + cos θZ).

This Lagrangian was computed within the base
associated to the axis of symmetry of the inverted
cone. The potential energy is therefore evaluated
with the rotation of an angle θ of the gravitational
acceleration g. The mass of the sliding ball is m.
The Euler–Lagrange equations are easily obtained:

Ẍ = −g

(
tan α

X cos θ√
ε2 + |A|2 − sin θ

)
(1)

Ÿ = −g

(
tan α

Y cos θ√
ε2 + |A|2

)
, (2)

−1.0 −0.5 0.0 0.5 1.0
0.0

0.1

0.2

0.3

0.4

x

z

Fig. 4. A sliding ball is moving over an cone shell.

where we have neglected the dynamics in the Z
direction: this is an approximation that is valid
for small angles α and θ. The general treatment
of the problem is done in [Argentina et al., 2007],
where Lagrange multiplier is introduced. This sys-
tem can be further simplified by removing unnec-
essary parameters by using dimensionless variable.
We rescale the variables X and Y with the length
R, related to the apparent radius of the cone,
when observed from above. We choose as a typical
timescale T =

√
R/g cos θ tan α. With this rescaling

procedure, we deduce the dynamics of the complex
amplitude a = A/R:

ä = − a√
ρ2 + |a|2 − µ, (3)

with the two dimensionless parameters: ρ = ε/R,
and ratio of the two angles µ = tan θ/tan α. Since
we describe a mechanical system not submitted to
any friction forces, the energy E is conserved:

E =
1
2
(
ẋ2 + ẏ2

)
+ µx +

√
ρ2 + x2 + y2. (4)

This system can be studied with polar coordinates
a = reiφ, for which we get the following set of
equations:

d(r2φ̇)
dt

= µr sin φ (5)

r̈ = − r√
ρ2 + r2

+ rφ̇2 − µ cos φ. (6)

The first relation (5) gives the dynamics for the
angular momentum J = r2φ̇ in the z direction.

2.2. Axis of the cone parallel to the
gravitational field

When the axis of the cone is aligned with the direc-
tion of the gravity, µ is equal to zero and J is a con-
stant of the movement. As consequence, φ is slaved
to r and the dynamics of the ball is given by the
second order Eq. (6):

r̈ = − r√
ρ2 + r2

+
J2

r3
, (7)

that describes the dynamics of a particle submitted
to a potential field plotted in Fig. 5. This potential
has a minimum with a nonzero value for r = rmin,
providing oscillation for r around rmin. The oscilla-
tion in the radial direction coupled to the conser-
vation of the angular momentum provides rosace
trajectories as in Fig. 6.
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r

V(r)

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

Fig. 5. Potential field related to Eq. (7), with ρ = 0.01 and
J = 0.1.

2.3. Singular cone

When ρ is equal to zero the ball is sliding over a
perfect cone and Eq. (3) is simplified into:

ä = − a

|a| − µ, (8)

but presents a singularity at a = 0. The correction
parameter ρ avoids this problem. We can compute
a simple solution (x = x0(t), y = 0), that repre-
sents an oscillation in the x direction, it obeys the
following relation:

ẍ0 = −sign x0 − µ. (9)

This equation is similar to a free fall whose acceler-
ation depends on the sign of x0. We choose as initial

x

y

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

Fig. 6. Rosace trajectory obtained for µ = 0 and ρ = 0.01.

t

x0

0 1 2 3 4

−0.4

−0.2

0.0

0.2

0.4

Fig. 7. Oscillations in the x direction for ρ = 0 and µ = 0.1.

condition (x0(0) = 0, ẋ0(0) = p). As 0 < t < τ , x0

is positive, and we solve (9) with the former initial
conditions, the ball is submitted to a negative accel-
eration. At time t = τ , the ball passes in the region
where x0 < 0 with a velocity −p, the relation (9)
becomes ẍ0 = 1 − µ that is solved using the initial
condition x0(τ) = 0 and ẋ0(τ) = −p.

x0(t) = −1
2
(1 + µ)t2 + pt,

0 ≤ t < τ =
2p

1 + µ
(10)

x0(t) =
1
2
(1 − µ)t2 − 3 − µ

1 + µ
pt +

4p2

(1 + µ)2
,

τ ≤ t < T =
4p

1 − µ2
. (11)

The temporal evolution of this special solution is
plotted in Fig. 7.

2.4. General case

In the general case, the systems (5) and (6)
represents a fourth order differential equation.
Since its physical origin is mechanical, the energy

θ

α

Sun

Earth
Moon

Fig. 8. Schematic representation of the Hooke three-body
problem.
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is conserved during time evolution. This set of
equations is then understood as a third order dif-
ferential system. As µ is equal to zero, there is an
additional symmetry and the angular momentum is
then preserved. Consequently, with this additional
conserved quantity, the dynamics is then controlled
by a second order differential equation: φ̇ can be
replaced by J/r2 as we did in deriving (7).

As seen in Eqs. (5) and (6), the inclination of
the axis of symmetry of the cone with respect to
the gravitational acceleration direction removes an
integral of movement: as µ is not zero, the angular
momentum is not conserved any more. The result-
ing third order differential equation can therefore
provide chaos.

R. Hooke and I. Newton worked on a descrip-
tion of the gravitational forces trying to understand
the behavior of a ball oscillating in a cone shaped
recipient. The center of the cone represents a mas-
sive object imposing its attraction to a light object:
the ball. One can therefore interpret the dynam-
ics of the ball in the cone, as the dynamics of the
moon subjected to the earth’s gravitational field.
The inclination of the axis of the symmetry intro-
duces an additional gravitational attraction, that
can be thought as related to those of the sun. As a
consequence, this very simple experiment is maybe
the first model of the well known three-body prob-
lem, introduced earlier in the work of Euler in 1760.

We have performed several numerical simula-
tions for finite value of ρ and µ, in order to explore
the large phenomenology of chaotic behaviors dis-
played by the trajectory of a massive particle inside
an inverted and inclined cone. Numerical computa-
tions are done with a fourth order Verlet algorithm
[Verlet, 1967], that preserves the energy of the sys-
tem on average. The energy is usually fixed to the
value E = 1, with ρ = 0.01 and the typical time-
step is 0.01.

For a gently tilted cone, the well-known behav-
ior of rosace-like trajectories are still present, as
shown in Fig. 6(b). But for large µ, complex behav-
ior appears. In order to clarify where and how this
complexity appear, a Poincaré section is performed
at the point x = 0 using the Hénon Algorithm
[Hénon, 1982] like in a previous study of Lopez-Ruiz
and Pacheco [2002a, 2002b, 2005].

As the parameter µ is increased, islands appear
on the Poincaré section denoting the presence of res-
onances as seen in Fig. 9(c) where homoclinic chaos
is developed [José & Saletan, 1998]. The oscillation
along the x direction remains marginally stable

until a critical value of µ (that depends on the reg-
ularization parameter ρ), where a period doubling
bifurcation occurs as exhibited in Fig. 9(c).

2.5. Period doubling instability

In this section, we would like to predict the value of
the parameter µ that gives rise to the period dou-
bling instability as observed in Fig. 9(c). It corre-
sponds to the destabilization of the vibrations with
a small amplitude, along the symmetry breaking
direction: (x = x0(t), y = 0), x0(t) being periodic
with period T . We perform the standard linear sta-
bility analysis by studying the asymptotic behavior
of perturbation of the solution. Let us define the
perturbations with x(t) = x0(t) + εu(t) together
with y(t) = εv(t). Injecting this definition into (3),
we get:

ü = − ρ2

(ρ2 + x0(t)2)3/2
u (12)

v̈ = − 1
(ρ2 + x0(t)2)1/2

v, (13)

where we have assumed that ε � 1. Since x0(t)
is periodic, we need to evaluate the monodromy
matrix [Joseph & Iooss, 1997], i.e. the mapping
describing how a given perturbation at time t
becomes at time t + T :(

ui+1

u̇i+1

)
= Lu(T )

(
ui

u̇i

)
, (14)

(
vi+1

v̇i+1

)
= Lv(T )

(
vi

v̇i

)
. (15)

We used the notation wi = w(t = jT ). The oscil-
lation x0(t) will be stable if the norm of the per-
turbation decreases with time. Hence, stability will
be insured if the norm of each eigenvalue (Floquet
Multiplier) of the two matrices Lu(T ), Lv(T ) are
smaller than one. Eigenvalues of the linear opera-
tor Lu(T ) are equal to one: its original system is
autonomous and conservative. The appearance of
the instability will therefore be related to the bifur-
cation in the Lv(T ) operator. In general, it is not
possible to analytically compute the eigenvalues of
Lv(t), but they can be evaluated numerically; an
example of the dependance of these quantities when
µ is varied is shown in Fig. 10.

In fact, the solution v(t) of Eq. (13) can be com-
puted analytically, if f(x) =

√
ρ2 + x2

0 is small com-
pared to one. In this limit, the highest derivative is
multiplied by a small coefficient: it is the basis of
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Fig. 9. Poincaré sections taken at x = 0: plane (y, ẏ): (a) µ = 0.1, (b) µ = 0.2 and (c) µ = 0.3. All these Poincaré sections
have been obtained with ρ = 0.01 and E = 1.

µ
0.0 0.2 0.4 0.6 0.8

−1.0

−0.5

0.0

0.5

Fig. 10. Minimum real part of the two eigenvalues of Lv(T ).
The blue curve is computed numerically, while the red one
is obtained through the WKB approximation for a numeri-
cal solution x0(t). The black curve is the analytical approx-
imation of the Floquet multiplier using Eqs. (19) and (25).
ρ = 0.2 and E = 0.245.

the well celebrated WKB approximation [Wentzel,
1926; Kramers, 1926; Brillouin, 1926]. If we write

f(t)v̈(t) + v(t) = 0

The WKB approximation gives

v(t) = f(t)1/4(ceig(t) + de−ig(t)) (16)

g(t) =
∫ t

0

1√
f(t)

dt, (17)

where c and d are related to the initial condition.
Equation (16) is known as the Floquet form. Taking
into account this solution, we construct Lv(T ):

Lv(T ) =




cos g(T )
√

ρ sin g(T )

− 1√
ρ

sin g(T ) cos g(T )


 . (18)
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We assumed that x0(0) = 0, and the ball is thrown
with a given and small velocity p, ẋ0(0) = p. The
Floquet multiplier λ± is obtained directly:

λ± = cos g(T ) ± i sin g(T ) (19)

As a consequence, the period-doubling instability
occurs for g(T ) = (2i + 1)π. It becomes necessary
to evaluate the integral g(T ):

g(T ) =
∫ T

0

1
(ρ2 + x2

0)1/4
dt, (20)

and this is a difficult task because we do not know
precisely either x0 nor T .

We therefore need a further approximation. We
plot x0(t) in Fig. 11. It is seen, that when x0(t) > 0,
for t smaller than τ , x0 � ρ. On the contrary, for
t > τ , x0(t) < 0, and ρ � x0. As a consequence, in
order to evaluate the integral (20), we cut this later
into two parts

g(T ) =
∫ τ

0

1
(ρ2 + x2

a)1/4
dt +

∫ T

τ

1
(ρ2 + x2

b)1/4
dt.

(21)

When t < τ , assuming x0(t) small, the equation can
be linearized, and we get:

xa = µρ

(
1 − cos

t√
ρ

)
+ p

√
ρ sin

t√
ρ
. (22)

It is plotted in Fig. 11. From this relation, we can
compute τ , since we just need to solve xa(τ) = 0.
In the limit of small ρ, we get:

τ = π
√

ρ − 2
µ

p
ρ + o(ρ2). (23)

tτ

x0 (t)

x∗

0.0 0.2 0.4 0.6 0.8 1.0
−0.05

−0.04

−0.03

−0.02

−0.01

0.00

0.01

0.02

Fig. 11. Approximation of the function x0(t) represented by
the blue curve. When t < τ , ρ > x0(t), and we plot xa(t) in
black thick line. When t > τ , x0(t) > ρ, and we plot xb(t) in
red. ρ = 0.01, p = 0.1 and µ = 0.6.

Fig. 12. Experimentally reconstructed trajectory of a ball
rolling over an inverted cone. In this picture, we measured
one branch of oscillation, and replicated it, mimicking the
original drawing of Newton reproduced in Fig. 2.

Consequently, the first integral on the right-hand
side of Eq. (21) is evaluated to π−2(µ/p)

√
ρ because

xa(t) � ρ. It remains to evaluate the integral for
t > τ . In this region, Eq. (3) is transformed into
ẍb + (1 + µ) = 0, and we can solve it:

xb = x∗ − 1
2
(1 + µ)(t − t1)2. (24)

The parameter x∗ is the minimum of the function
xb, and it is located at t = t1. Since the energy is
conserved, the minimum x∗ is the root of Eq. (4)
with the initial condition (x0(0) = 0, ẋ0(0) = p):
p2/2 + ρ = µx∗ +

√
ρ2 + x∗2. The second integral

on the right-hand side of Eq. (21) can also be eval-
uated as∫ T

τ

1
(ρ2 + x2

b)
1/4

dt =
149

30
√

2 − 2µ
+ o(ρ2),

and we finally get the sought g(T ):

g(T ) = π +
149

30
√

2 − 2µ
− 2

µ

p

√
ρ + o(ρ2). (25)

The corresponding Floquet multiplier is shown in
Fig. 10.

An inverted cone in aluminium was built for an
experimental demonstration. Its angle with respect
to the horizontal is α = 14. The external radius
of the cone as seen from above is 130 mm. The
radius of the internal spherical regularization seen
from above is 2.5 mm. Hence, the dimensionless
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radius is ρ = 2.5/130 = 0.0192. The moving ball of
radius 2.2 cm is made of Latex. Its radius introduces
a “cut-off” and modifies the effective nondimen-
sional radius ρ = 2.2/13 = 0.16. The movements
are recorded with a camera placed above the cone.
Image processing allows us to follow the ball’s tra-
jectory. The resolution for the lengths is 1 mm per
pixel. For null inclination, we observe a rosace-like
trajectory.

In this work, we have studied the chaotic
motion of a ball moving on a conical surface when
the axis is slightly tilted from the direction of
gravitational field. The symmetry breaking induced
by the tilt is analogous to the effect of a third body
in the two-body interaction. The analysis was done
in the limit of a widely open cone and a small tilt.
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