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ABSTRACT 
The slender body approximation, first introduced by [Rankine, 1886] for the study of a potential flow around a thin 
obstacle in an infinite domain states that a thin obstacle has the same effect on the flow as a distribution of source/well 
doublets on a line. This model has been extended later for linear free surface flows and lead to the explicit formulas of 
[Michell, 1898] and [Sretenski, 1937] for the computation of the wave making resistance of a slender ship moving with 
an uniform velocity. These formulas provide the wave making resistance as a quadratic function of the hull “offset” 
function. Although very well known and widely used for ships with polynomial shapes (such as the Wigley hull), very 
few attempts of hull optimisation have been made. Some existing results suggesting that these optimisation problems are 
in fact singular (non-existence or non-uniqueness of optimal shapes). A regularisation of the problem limiting the 
surface area (and hence the frictional resistance) will be presented along with numerical results we have established in 
[Dambrine, Pierre, Rousseaux, 2015] in the case of infinite depth and width. In the aforementioned article, the hull 
offset function is supposed have a fixed compact support (the support actually represents the longitudinal cut of the 
hull). Setting a constant support is a quite restrictive condition. We will show how to partly remove this condition by a 
geometric optimisation method in the spirit of [Allaire, 2007]. 
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RESUME 
Optimisation de carènes dans l’approximation de carènes élancées 
L’approximation de corps élancés, introduite dans [Rankine, 1886] pour l’étude d’écoulements potentiels autour d’un 
obstacle fin dans un milieu infini consiste à assimiler un tel obstacle à une distribution de sources/puits le long d’une 
ligne de symétrie. Ce modèle a été étendu plus tard aux écoulement à surface libre linéaires et conduit aux formules 
analytiques de [Michell, 1898] et [Sretenski, 1937] pour le calcul de la résistance de vagues subie par une carène 
élancée avançant avec une vitesse constante. Ces formules donnent la résistance à l’avancement comme une fonction 
quadratique de la fonction “offset” de la carène, qui joue ici le rôle de paramètre de forme. Bien qu’elle soit bien 
connue pour des carènes de formes polynomiale (comme la carène de Wigley), peu de travaux abordent l’optimisation 
des formes de carènes dans un contexte plus général. Quelques résultats existants suggèrent que ce problème est 
singulier (non-existence ou non unicité de carènes optimales). Un terme de régularisation limitant la surface de la 
coque (et ainsi la résistance frictionnelle) sera introduit permettant d’établir des résultats d’existence d’unicité et de 
régularité du problème d’optimisation. Quelques résultats numériques établis dans [Dambrine, Pierre, Rousseaux, 
2015] seront présentés. Dans l’article mentionné précédemment, la fonction “offset” de la carène est supposée avoir un 
support compact et fixe (le support représente la section longitudinale de la carène), ce qui représente une condition 
plutôt restrictive, que nous tenterons partiellement de lever par le biais de méthodes d’optimisation géométrique 
similaires à celles développées dans [Allaire, 2007]. 
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1. INTRODUCTION 
Although it is only one component in the long chain of efficiency of a ship, the minimisation of the wave-
making resistance is interesting for both the reduction of fuel consumption and the reduction of the impact of 
wash waves on the banks of rivers. This wave making resistance depend on the dispersive context (finite  or 
infinite depth/width, stratification,…), the ship’s velocity and also the shape of the ship. 
 In this article we present some results of ship’s hull shape optimisation in a simplified physical context 
(slender-ship models). This problem has been studied theoretically in [Kostyukov, 1968], however, few 
numerical studies have been carried out on general shapes. Our goal is to remove as many geometrical 
constraints as possible on the space of shapes as we progress. We will start with optimisation of ship hull 
with a given longitudinal section (we call the support of the hull), and move on to actual shape optimisation  
of the support. In the following section we describe a simplified representation of the ship’s hull with an 
offset function. 

1.1 Representation of the ship’s hull 

Let us consider a ship moving at a constant speed, along the x axis. We will call y the transverse axis, and z 
the depth axis. The “centerplane” of the ship is defined by the (x,z) plane. Without loss of too much 
generality, we will suppose that the hull is symmetric with respect to the centerplane. In the following, we 
will consider that the surface of the hull is defined by the graph of a positive function !  which, for every 
point of the centerplane returns the half-width of the hull (see figure 1). 

!
Figure 1: representation of the ship’s hull with an offset function. Right: definition of the offset function !  ; left: 
representation of the support !  of the function. !
 We will call the “support” of the hull the closure of the set of points !  on which ! . This 
support will be often called ! . In the following paper, in order to avoid infinite length and draught ships, we 
will consider !  to be bounded. 
 The “slender-ship hypothesis” which is required for the simplified models described in the next section 
states that the gradient of !  has to be uniformly small on the centerplane. In order to avoid jumps (infinite 
gradients), we will assume that !  “touches” zero on the border of ! . The following section details the 
simplified analytic model used in our optimisation problem, which makes use of the aforementioned 
“slender-ship hypothesis”. 

1.2 Wave-making resistance formula 

In the following study we will use a simplified model to describe the wave making resistance of a ship which 
is based on Michell’s formula [Michell, 1898]: 

 !  (1) 
with: 

 !  (2) 
where ! , with !  being the ship’s velocity. This formula can be obtained by solving analytically the 
Neumann-Kelvin model (see [Kuznetsov, 2004] for a detailed study of the model) for ship waves, which is 
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entirely based on the following assumption: the wake waves are linear with respect to the hull’s offset 
function. This assumption implies that (1)-(2) is valid in the limit of slender/thin ships. 
 It is worth noticing that Michell’s formula can be rewritten in the following kernel-based form which is 
more appropriate for theoretical studies and optimisation: 

 !  (3) 
where the kernel !  (that we call Michell’s kernel) is given by: 

 !  (4) 
With this formulation, we can see easily that the wave-making resistance is a quadratic function of the ship’s 
offset function. The problem of finding the offset function that minimises the wave-making resistance is 
hence a problem of quadratic optimisation for which specific efficient numerical techniques can be applied. 
 Although our paper focuses on Michell’s kernel to describe wave-making resistance in unrestricted 
waters, the same method can be applied to various physical situations, with the same kernel-based 
formulation as in (3), but with different kernel functions. Here are some examples of such formula: 
• Sretensky’s formula for finite depth waters (see [Sretensky, 1937]), 
• Sretensky’s formula for finite width channels with infinite depth (see [Stretensky, 1936]), 
• Keldysh-Sedov’s formula for both finite width and depth (see [Keldysh, Sedov, 1937]). 

1.3 Theoretical issues : the need for regularisation 

Let us consider the following problem: 

 !  (5) 
where !  represents the set of constraints on the hull. First we have already stated that !  should be positive. 
In order to avoid the trivial zero solution, we need to impose a volume for the hull : 

 !  (6) 
where !  is the volume of the hull. Moreover, as stated before, the restriction of !  on the border of !  should 

be zero. Since we need to be able to define the gradient of ! , its natural class of regularity should be ! . 
Summing up all the above constraints, !  writes: 

 !  (7) 
 Various theoretical results developed in [Kostyukov, 1968] suggest that the problem is singular. The 
main idea is to build zero wave-making resistance hulls : if one can find !  such that !  , 
then for any scalar value ! , we have : ! , hence the minimiser is not unique (there is an infinity 
of minima). In [Kostyukov, 1968] zero resistance hulls are found in the case of non-bounded supports, and, 
in the case of bounded support, for non-positive ! . Further numerical tests in [Dambrine, Pierre, Rousseaux, 
2015] seem to confirm the fact that the problem of minimizing the wave-making resistance is ill-posed. !
 A solution to this problem is to add a regularisation term which prevents the solution to become too 
oscillatory, leading to large surface area hulls. The new problem writes: 

 !  (8) 
where !  is a (typically small) regularisation parameter. Note that this term can be related to a frictional 
resistance term. A simplified model of frictional resistance writes: 

 !  (9) 
where !  is a drag coefficient and !  the surface area of the hull. In our case this surface area writes:  

 !  (10) 
Developping at first order with respect to ! , we obtain the following approximation: 

 !  (11) 
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When the support is considered to be fixed, the first term !  is constant, hence the minimisation problem (8) 
with !  is actually the minimisation of the sum of the wave making resistance and frictional 
resistance. In [Dambrine, Pierre, Rousseaux, 2015], we have proven the existence of a unique solution of the 
regularised optimization problem (8).  

3. HULL OPTIMISATION WITH A CONSTANT SUPPORT 
Let us recall the regularised optimisation problem (8): 

 !  (12) 
We use a finite-element approach in order to solve this problem. Let us decompose !  on a finite element 
basis ! : 

 !  (13) 
By injecting the expression (13) into (12), and by denoting !  the vector of coefficients, the 
problem becomes the following quadratic programming problem: 

 !  (14) 
where ! , with : 

 !  (15) 
and !  is the discrete set of affine constraints, which writes in the case of P1 or Q1 finite elements: 

 !  (16) !
 The matrix detailed in (15) can be computed using standard finite element softwares such as FreeFem. 
The computation of Michell’s kernel is performed by using a quadrature method described in [Tarafder, 
2007] which preserves the positivity of the matrix. We used the algorithm of [Uzawa, 1958] in order to solve 
the quadratic programming problem (14-16). !
The following numerical tests show the results of optimisation for a fixed rectangular support 
! , with ! . Let us recall that Michell’s kernel depends on the 
velocity of the ship, and hence each hull will be optimised for a given velocity. For all the following tests, the 
ship’s velocity will be defined using the length-based Froude number, which is a more relevant quantity to 
measure the effect of ship waves: 
 !  (17) 
The regularisation parameter is defined according to (9), with a drag coefficient of 0.01 (which is a 
reasonable value for a streamlined body).  The figure 2 shows the result of our algorithm for various values 
of the targeted Froude number. We obtain very different designs depending on this parameter. The most 
notable transition is the apparition of a bulbous bow and stern for values of the Froude number for which the 
wave resistance is usually ramping up very quickly.  
 In order to understand the efficiency of these bulbous bows, we have compared the profile of wave 
resistance of two different optimised hulls with a standard shape called the parabolic Wigley hull with the 
same volume. In figure 3 we notice that the each optimised hull are efficient in the Froude regimes they were 
designed for. The optimised hull for a Froude number of 0.3 (the canoë-like shape in figure 1) behaves well 
for low velocities, but is less efficient than the Wigley hull for higher velocities, whereas the optimised hull 
for a Froude number of 0.5 (the bulbous bow and stern shape in figure 1) is not efficient at all for low Froude 
numbers. 
 Bulbous bows are classical in hull design however, bulbous stern are never encountered. This is due to 
the fact that we have not taken into account propulsion in our modelling and the propeller efficiency yields a 
lot of geometrical constraints on the stern, which are too complex to be taken into account in this study. !
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!
Figure 2: A view of the hulls obtained though our optimisation algorithm for a fixed rectangular support, with various 
values of the target Froude number. !

!
Figure 3: Representations of the wave resistance profiles of two optimised hulls for different Froude numbers (in plain 
line) compared to an equivalent parabolic Wigley hull (in dashed line). 

4. TOWARDS SUPPORT OPTIMISATION 
The previous simulations have shown that the efficiency of a hull can be improved by modifying its shape, 
however, we assumed that the support (i.e. the longitudinal section) of the offset function is given. In this 
section we ask ourselves the question: can we further improve the situation by optimising also the shape of 
the support on which it is defined ? Such an optimisation problem would write : 

 !  (18) 
where: 

 !  (19) !
Of course, in (18), !  has to lie in a set of admissible supports that we need to define. One of the biggest 
issues is that there is no general parametrisation of such supports, and without any structure, such sets can be 
extremely complex and lead to ill-posed problems for optimisation.  
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4.1 Geometric optimisation : a brief description 

The solution we adopted here, is the approach developed in [Allaire, 2007] which consists in restricting the 
set of “admissible” supports to the supports that can be reached through a smooth and reversible deformation  
of a reference support. Hence the parameter that defines a support is this deformation. The advantage of this 
method is that it provides a good notion of gradient which will be useful to design an optimisation algorithm. 
However, its main drawback is its lack of generality : for example, it is not possible to add holes in the shape 
or secondary components to the hull since all the shapes are obtained through the smooth deformation of an 
initial shape. Note that the relation between !  and !  is very complex and lacks the main ingredient to 
ensure the uniqueness of a minimum : convexity. Other theoretical tools ca be used to obtain uniqueness but 
these methods are non-constructive. 
 A notion of shape gradient can be built on the idea that we can compute the first order Taylor expansion 
of the functional !  with respect to a small deformation ! , where !  is a (small) velocity field 
which represents the instantaneous deformation of the support. The shape gradient of !  provides a small 
deformation field that acts as a descent direction for our support. By repeating this process until convergence, 
our gradient descent algorithm provides a (at least) local minimiser for ! . 

4.1 Numerical calculations 

The computation of the shape gradient is not detailed here, however, we give some numerical results to 
illustrate the difficulties related to this method. All the computations below have been performed with the 
help of FreeFem++, in particular, we made an extensive use of the mesh moving and re-meshing methods 
provided by this software. !

!
Figure 4: representation of the hull shape for different steps of the support optimisation algorithm with a target Froude 
number of 0.3. The last step represents the converged solution. The colours represent the optimised offset function 
values. 
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!
Figure 5: representation of the hull shape for different steps of the support optimisation algorithm with a target Froude 
number of 0.75. The last step represents the converged solution. The colours represent the optimised offset function 
values. !
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In figure 4 and 5, we can see two example of support optimisation based on shape gradient descent. These 
examples illustrate the sensitivity of this method on the parameters. In the first case, a steady state is reached 
in finite time, and the local minimum we obtain seems to be a reasonable design for a ship. In the second 
case the whole volume sinks and no steady-state is reached. This is due to the fact that it is possible to build  
non-converging minimising sequence of hulls by sending all the mass away from the free surface (thus 
generating no waves). However the benefit of sending the mass away from the surface has to be counter-
balanced with the cost of stretching the support. Recall that no topological changes are allowed, hence the 
support will always touch the surface, even through a thin filament. In the particular phenomenon depicted 
on figure 5, the “sinking" effect seems to overcome this cost.  
 As we got rid of the fixed support constraint, we observed new situations, such as the one depicted in 
figure 5, which is trivial from the point of view of naval architecture (less so in the point of view of shape 
optimisation). The addition of new constraints (such as a bounding box or a fixed center of gravity) in the 
future should allow us to obtain more reasonable designs with the geometrical optimisation process. 

5. CONCLUSION 
We have conducted a study of the minimisation of the wave-making resistance of a ship by the use of 
simplified analytic models, and trying to consider shapes with as much generality as possible. First, by 
setting the support constant we obtain a parametric optimisation problem that lies in the family of quadratic 
programming problems, which can be solved efficiently, leading to designs featuring bow and stern bulbs. 
The optimisation of the support is a way to solve the problem with more generality, but some care has to be 
taken in order to avoid trivial solutions. I future works we will investigate the problem by removing the 
slender-ship hypothesis. This should lead to even more generality for the possible shapes we may obtain, and 
of course to new issues for the definition of the right set of constraints to associate to our problem. 
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