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Physical systems such as an inverted pendulum driven by a spiral spring, an unbalanced
Euler elastica with a travelling mass, a heavy body with a parabolic section and an
Ising ferromagnet are very different. However, they all behave in the same manner
close to the critical regime for which nonlinearities are prominent. We demonstrate
experimentally, for the first time, an old prediction by Joseph Larmor, which states that a
nonlinear oscillator close to its supercritical bifurcation oscillates with a period inversely
proportional to its angular amplitude. We perform our experiments with a Holweck–
Lejay-like pendulum which was used to measure the gravity field during the twentieth
century.
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1. Introduction

Larmor (1893) published a little known paper in which he derived the period
of oscillations of a nonlinear oscillator when the linearity is made to vanish. He
qualified the related equilibrium position of neutral or critical. He showed that the
period of oscillations was inversely proportional to the initial angular amplitude
of excursion (see appendix A for a demonstration). Larmor wanted to understand
the stability of a solid body resting on a solid surface. The stability of the solid
undergoes a pitchfork bifurcation when the centre of gravity G coincides with the
centre of curvature O at the point where the body rests and becomes unstable
when G > O (figure 1). Geometrically, the point O corresponds to the cusp’s
extremity of the evolute of the body section.

At the bifurcation, the vertical position loses its stability to the profit of
two stable flanking positions, F1 and F2, in which the tangents from G to the
evolute are vertical. Larmor (1893) derived the nonlinear equation describing
the oscillations of a body with the mathematically tractable parabolic section
(y = ax2) and whose centre of gravity is at a very short distance c from the cusp
O of its evolute. He found that
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Figure 1. A parabolic solid body resting on a plane surface. Grey curve is the evolute of the
parabola: O denotes its cusp. Black lines drawn from the centre of gravity G are tangent to the
evolute.

κ2θ̈ = cgθ − ag
4

θ3, (1.1)

where κ = √
J /(MA) is the radius of gyration of the solid body of mass

M , A is the total cross-sectional area and J the mass moment of inertia.
When c < 0 and the nonlinearity is negligible, one recovers the equation of
a simple pendulum. We can define the equivalent length of the pendulum
as l eq = κ2/|c| and the associated period of oscillations as Tbody = 2π

√
l eq/g =

2πκ/
√|c|g = 2π

√
J /(MA|c|g). Larmor solved the nonlinear equation with the

help of complete elliptic integrals of the first and second kinds to derive the
law that the frequency of a cubic oscillator close to its pitchfork bifurcation
(c = 0) is linear with the initial amplitude of excursion when dissipation is
negligible.

Here, we study an inverted pendulum as a mechanical analogue of a heavy
body rolling on a flat surface. The set-up consists of a rigid bar with a movable
mass and a spiral spring. We present the different regimes of oscillations and
we focus our attention on the critical regime where linearities are absent and
only nonlinearities dictate the behaviour of the pendulum. We point out the
analogy with first- and second-order phase transitions ‘à la Landau’ (Guyon 1975;
Charru 1997; Fletcher 1997; Mancuso 2000).
Proc. R. Soc. A (2010)

http://rspa.royalsocietypublishing.org/


Criticality of spiral spring pendulum 409

 on January 13, 2010rspa.royalsocietypublishing.orgDownloaded from 
(a) (b)

Figure 2. The Euler elastica with a travelling mass: (a) l < l c; and (b) l > l c.

2. Theoretical context

During the 1930s, the physicist Fernand Holweck and the geophysicist Pierre
Lejay developed a gravimeter based on the oscillations of a Euler elastica
(figure 2) that is a strip of metal with a mass that can translate along it
(Holweck & Lejay 1930, 1931, 1934). The destabilizing effect of gravity is
counteracted by the stabilizing elastic torque. The pendulum oscillates around the
vertical position of equilibrium θ = 0 for a very long time provided that the set-up
is placed within a vacuum chamber so as to minimize the air friction. Holweck &
Lejay (1934) were able to carry out campaigns of gravity measurements
(e.g. in China) with more than one or two orders of magnitude for the precision
than the classical pendulum and with a small, easily transportable and simple
experimental apparatus.

From either Euler–Lagrange equations or the balance of moments of
momentum, it is straightforward to derive the evolution equation for the
deviation angle θ with respect to the vertical direction of a Holweck–Lejay-like
pendulum

I θ̈ = mgl sin θ − Kθ , (2.1)

where I is the mass moment of inertia, m the weight of the translating mass,
g the gravity, l the distance of the centre of gravity of the mass to the oscillation
axis and K the elastic coefficient of the spiral spring (figure 3).

The equation is invariant under the following symmetries:

(i) time translation: t → t + t0,
(ii) time reversibility: t → −t,
(iii) space reflection: θ → −θ .
Proc. R. Soc. A (2010)
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Figure 3. Scheme of the spiral spring inverted pendulum.

(a) Several behaviours

We identify four regimes of motion.

(i) θ � 1, K > mgl and ω = √
(K − mgl)/I

The simple linear equation of the usual pendulum is recovered

θ̈ + ω2θ � 0. (2.2)

The period of oscillations is

T = 2π

√
I

(K − mgl)
. (2.3)

It is straightforward to evaluate the relative variation of the gravity field as
a function of the relative variation of the period to infer the precision of the
Holweck–Lejay pendulum(

�g
g

)
H–L

= 4π2

T 2

2l
g

�T
T

= 4π2

T 2

(
�g
g

)
Classical

. (2.4)

For a period of 1 s, the pendulum of Holweck and Lejay is roughly 40 times more
precise than a classical linear pendulum (I = ml2 and K = 0; the mass oscillates
downwards) whose period is TClassical = 2π/ω0 = 2π

√
l/g.

(ii) θ small but finite, K > mgl and ω = √
(K − mgl)/I

Taken the smallest nonlinearities into account, we obtain a cubic oscillator

θ̈ + ω2θ + mgl
6I

θ3 = 0. (2.5)

The nonlinear oscillator is of the hard type since the period decreases with the
amplitude due to the positive sign of the cubic term. It can be checked readily
Proc. R. Soc. A (2010)
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by deriving the so-called amplitude equation (θ = A eiωt + c.c. = A eiτ + c.c. where
c.c. means the complex conjugate; Cross & Hohenberg 1993):

∂A
∂τ

= iA + i
mgl
4Iω2

|A|2A. (2.6)

The amplitude equation is the analogue of the Landau equation for the order
parameter in the mean-field theory (Cross & Hohenberg 1993; see below). It is
invariant with respect to the symmetries of the initial equation for θ ,

(i) A → A eiφ: time translation,
(ii) A → −A: space reflexion,
(iii) A → A∗ and t → −t: time reversibility.

The resultant period taking into account the initial angular amplitude of
excursion (θ0 = 2A0) due to the influence of nonlinearities is

T = 2π

ω(1 + (mgl/4(K − mgl))A2
0)

� 2π

ω

(
1 − mgl

16(K − mgl)
θ2
0

)
<

2π

ω
. (2.7)

(iii) θ small but finite, K < mgl and σ = √
(mgl − K )/I

θ̈ = σ 2θ − mgl
6I

θ3. (2.8)

We have already studied this equation in another context and we refer the
interested reader to Rousseaux (2009).

The equilibrium solutions are θeq = 0 and θeq = ±√
(6I /mgl)σ =

±√
6(mgl − K )/mgl . One introduces the critical length l c = K/mg (analogous

to the critical temperature Tc in phase transitions, see below) and the latter
solutions become, close to the bifurcation,

θeq � ±
√

6(l − l c)
l c

≈ ±(l − l c)1/2. (2.9)

The 1
2 exponent is universal and reminiscent of the Landau mean-field

theory for second-order phase transitions: the bifurcation is of the pitchfork
type. The space reflection symmetry θ → −θ is broken when the bifurcation
occurs. Similarly, the magnetization behaves as M ≈ ±(T − Tc)

1/2 close to the
phase transition in a ferromagnet (Guyon 1975; Charru 1997; Fletcher 1997;
Mancuso 2000).

(iv) K = mgl

A critical regime appears where linearities are absent

θ̈ = −mgl
6I

θ3. (2.10)
Proc. R. Soc. A (2010)
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Introducing the short notation for the time derivative ′ = ∂t
√

6I /mgl ,
we have

Θ ′′ = −Θ3. (2.11)

Using this rescaling of time, it is straightforward to infer that the period will
depend inversely on the initial angular position of the pendulum. Dimensional
analysis gives the correct behaviour but is unable to predict the exact numerical
value derived in appendix A following Larmor (1893)

T = 4

√
6I
mgl

1.85407
|θ0| . (2.12)

The Holweck–Lejay pendulum and its variants (the present spiral pendulum, the
Euler elastica, etc.) enter into a universal class of critical equilibria where linearity
vanishes and the period of oscillations is controlled only by nonlinearities.

(b) The fold catastrophe and its associated cusp

Pitchfork bifurcations (second-order phase transitions) are not robust when
imperfections are introduced (Guyon 1975; Charru 1997; Fletcher 1997;
Mancuso 2000); they degenerate into saddle–node bifurcations (first-order phase
transitions). Here, the spiral spring is supported on a flat plate. We can introduce
an imperfection by inclining the support of a tilting angle α. The equation of
evolution becomes (Charru 1997)

I θ̈ = mgl sin θ − K (θ − α). (2.13)

The equation is similar to a Newton-like equation

I θ̈ = −dU
dθ

, (2.14)

with the following potential energy:

U (θ) = −mgl cos θ − K
θ2

2
+ Kαθ + constant. (2.15)

When θ � 1, the potential energy approximates to

U (θ) � mgl
θ4

4! + (mgl − K )
θ2

2
+ Kαθ + constant′. (2.16)

It is analogous to the free energy of an Ising magnet that describes the
phase transition from a ferromagnetic to a paramagnetic behaviour (Guyon 1975;
Charru 1997; Fletcher 1997; Mancuso 2000)

F(M ) � a
M 4

4! + b(T − Tc)
M 2

2
+ μ0HM + d. (2.17)
Proc. R. Soc. A (2010)
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Figure 4. The fold catastrophe: the oscillation angle θ as a function of both the tilting angle α

and the reduced length l/l c.

Table 1. The triple analogy.

solid body inverted pendulum Ising ferromagnet

rolling angle, θ oscillation angle, θ magnetization, M
distance to the evolute, c distance to the critical length, l − l c temperature shift, T − Tc
tilting angle, α tilting angle, α magnetic field, H
potential energy, U potential energy, U free energy, F
equivalent length, l eq length of the pendulum, l temperature, T
susceptibility, χm = ∂θ/∂α susceptibility, χm = ∂θ/∂α susceptibility, χ = ∂M/∂H

The order parameter of the phase transition is the magnetization M and
the control parameter is the temperature T . The magnetic field H induces an
additional interaction term linear in the magnetization. We resume the triple
analogy in table 1.

For equilibrium positions, the system is described by the implicit equation

α = θ − β sin θ , (2.18)

with β = l/l c. If one plots the oscillation angle θ as a function of the reduced
length β and the tilting angle α, a fold catastrophe appears (Mancuso 2000) as
can be seen easily with the small-angle approximation θ � 1 (figure 4)

α + (β − 1)θ − β
θ3

3! = 0. (2.19)
Proc. R. Soc. A (2010)
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Figure 5. The cusp: the tilting angle α versus the reduced length l/l c. α = 0 and l = l c: pitchfork
bifurcation. α 	= 0: saddle–node bifurcation on the black lines. Grey region: three fixed points.
White region and α 	= 0: zero fixed point. White region and α = 0: one fixed point.

Similar to the magnetic susceptibility χ = ∂M/∂H , we introduce the
mechanical susceptibility that is a measure of the response of the system to a
perturbation/imperfection

χm = ∂θ

∂α
= 1

1 − β cos θ
. (2.20)

For small oscillation angle θ � 1, it is written as

χm � l c
l − l c

≈ (l − l c)−1. (2.21)

One recovers the usual mean-field exponent 1 of Landau theory for the
susceptibility as a function of the control parameter. The mechanical
susceptibility diverges when θ reaches

θ∗ = cos−1(β−1). (2.22)

The singularity corresponds to the cusp shape of the projection of the fold
catastrophe in the plane (l/l c, α; figure 5)

α∗ = cos−1(β−1) − β(1 − β−2)1/2. (2.23)

3. Numerical validations

For completeness, we display in figures 6 and 7 the different phase spaces
(θ̇ versus θ) corresponding to the regimes that we identified and that describe
the behaviour of the inverted pendulum as a function of l . We used a dissipative
Proc. R. Soc. A (2010)
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(a) (b)

(c) (d )

Figure 6. Phase spaces (θ , θ̇ ) (ν = 0 and α = 0): (a) classical nonlinear pendulum; (b) inverted
pendulum l < l c; (c) inverted pendulum l > l c; and (d) inverted pendulum l = l c.

version of the equation with a viscous damping ν and a tilting angle α to treat
the general case and to take into account the experimental observed damping due
to the friction effects

I θ̈ = mgl sin θ − K (θ − α) − νθ̇ . (3.1)

For comparison, we recall in figure 6a the phase space of the usual nonlinear
cubic oscillator. The trajectories are mostly oscillations (closed) when the angles
are small. An elliptical heteroclinic trajectory connects the vertical unstable
positions. Outside this ellipse, librations characterize the motion of the pendulum.
For the inverted pendulum, the behaviour is not the same depending on
whether l is superior or inferior to l c. When l < l c, the trajectories are only
oscillations (figure 6b). If l > l c, librations appear between the two bifurcated
angular positions F1 and F2 (figure 6c). At criticality, the system hesitates
between one and two stable equilibrium positions (figure 6d) but only oscillations
are observed.

The inclusion of the tilting angle favours one centre of oscillations with respect
to the other (figure 7a). For a stronger imperfection α, one focus can disappear
(figure 7b). Viscous friction damps both the oscillations and the librations
(figure 7c,d).
Proc. R. Soc. A (2010)
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(a) (b)

(c) (d )

Figure 7. Phase spaces (θ , θ̇ ) for the inverted pendulum l > l c: (a) α > 0, ν = 0; (b) α 
 0, ν = 0;
(c) α = 0, ν > 0; and (d) α > 0, ν > 0.

4. Experimental validations

Experiments have been done with a very simple pendulum that is actually used in
our university as a teaching apparatus for students (figure 8; Peters 1995; Charru
1997; Lasic et al. 2001; Milotti 2001; Sconza & Torzo 2005).

The spiral spring is handmade, starting from a hardened steel plate, and is
characterized by its stiffness k = 10.8 × 10−3 N m rad−1. The position of the brass
weight m = 20.83 × 10−3 kg can be varied by screwing it along a threaded rod.
The bifurcation length l c measured from the centre of the pendulum axis to
the gravity centre of the brass weight can be obtained by a static method: the
equilibrium angle θ varies according to the simple law θ/sin θ = l/l c. As seen in
figure 9, it is possible to obtain a value of l c by the well-known ‘extrapolation
method’ used in the presence of such supercritical transitions. As a matter of
fact, it is experimentally very hard to measure directly the critical length by
varying the height of the brass weight along the rod, hoping to observe the fall
of the rod on either side. Indeed, close to criticality, several equilibrium positions
are experimentally observed because of the solid friction that blocks the rod on
a position close to the vertical direction. Hence, to infer the critical length, we
measure the angle θ as a function of l when l > l c and one plots θ/sin θ versus l
(figure 9).
Proc. R. Soc. A (2010)
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(a) (b)

Figure 8. The spiral spring inverted pendulum: (a) l < l c; and (b) l > l c.
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Figure 9. θ/sin θ versus l . One infers the extrapolated value of the bifurcation length l c = 53 mm.

The value l c = 53 mm is in good agreement with the one obtained by the
dynamical methods used in this paper. The other parts of the oscillating arm
are neglected here except the brass wheel (I = 61.6 × 10−6 kg m2) associated
with the oscillation, which constitutes an important increase in the inertia
of the pendulum lowering the importance of friction in the experiment. The
only peculiarity to be mentioned concerning this experimental apparatus is the
particular care associated with the ball bearing constituting the articulation of
the pendulum: grease was removed from it in order to have sufficiently low viscous
damping.
Proc. R. Soc. A (2010)
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(a) (b)

Figure 10. The temporal evolution of the oscillation amplitude: (a) l < l c, θeq = 0; and (b) l > l c,
θeq 	= 0. Time is pointing downwards.

Each evolution (θ versus time) was obtained from a video sequence for a given
value of l . The films were opened in an Image J stack and treated with a dedicated
plug-in that extracts the decreasing oscillation amplitude of the pendulum and
allows the measurement of the dependance of the frequency of oscillations with
the amplitude since, in one experimental run, the amplitude decreases to zero
because of the friction.

Then, the oscillation extrema are dotted (figure 10) and angular positions
as well as time coordinates are directly extracted in a table. Subtracting
successive values of extrema positions gives us directly the instantaneous
period, amplitude and frequency/amplitude dependence curves that are plotted
in figure 11.

The spreading extension of the points reported in figures 11 and 12 is associated
with the low resolution of the numerical video method used for measurements: a
low-definition 25 frames per second camera is used and the Image J extraction
software ‘unwinds’ the angular excursion of the pendulum, giving the decreasing
amplitude oscillations shown in figures 11 and 12. The table of values (period
versus amplitude) are directly obtained by putting dots on the maxima ‘by hands’.
The greatest uncertainty and the apparent ‘quantization’ of the frequency values
(particularly visible on the grey upper curve of figure 11) are associated with the
low temporal resolution ( 1

25 s) of the method.
Figure 12, corresponding to the frequency/amplitude relation at the critical

value l c, allows the measurement of the slope to be compared with formula (2.12)
giving Larmor’s prediction for this slope. Taking into account the low precision
of the experimental parameters (we minimized, in particular, the inertia),
the formula-calculated value 0.523 Hz rad−1 appears to be in good agreement
with the experimental value 0.457 Hz rad−1. We checked experimentally that
the period of oscillation tends to infinity when l = l c for a very small angle
θ . This is reminiscent of the well-known criticality slowing down close to a
phase transition.
Proc. R. Soc. A (2010)
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Figure 11. The frequency of oscillations of a Holweck–Lejay-like pendulum as a function of its
angular amplitude of excursion for different lengths l . Filled dark grey triangle, l = 35 mm; filled
black diamond, l = 43.8 mm; open diamond, l = 47.6 mm; open triangle down, l = 50 mm; filled
black circles, l = 52 mm; open triangle, l = 55 mm; filled light grey triangle, l = 60 mm.
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Figure 12. The frequency of oscillations of a Holweck–Lejay-like pendulum as a function of its
angular amplitude of excursion at the critical length of 53 mm: the fit gives a 0.457 slope value for
the linear dependence of the frequency versus amplitude.
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5. Conclusion

We showed that the spiral spring, parabolic heavy body and Holweck–Lejay
oscillators belong to the same class of universality as the Ising ferromagnet
close to their symmetry-breaking bifurcation. The Larmor’s law was confirmed
experimentally with a good accuracy. We plan to come back to this problem, this
time taking into account the three-dimensional motion of the bob of the inverted
pendulum when the system is not constrained to oscillate in a vertical plane. We
have already observed a precessing motion of the resulting ellipses.

G.R. would like to thank Marc Monticelli from the Laboratoire Dieudonné for using the
software X-DIM with which the phase spaces of figures 6 and 7 were computed and drawn.
G.R. and Fernand Holweck spent part of their studies at ESPCI (Ecole Supérieure de Physique
et Chimie Industrielles, Paris, France; http://www.espci.fr/) and this paper is a tribute to
the great experimental achievements of the ESPCI engineer Holweck. We would like to thank
Tomoyuki Nagaya (Oita University) for building the polar extraction Image J plug-in used in the
image analysis.

Appendix A

Here, we derive Larmor’s (1893) formula for the period of oscillations of a
cubic oscillator close to its pitchfork bifurcation. The conservation of energy is
written as

1
2

(
dθ

dτ

)2

+ θ4

4
= θ4

0

4
, (A 1)

where θ0 is the initial angular amplitude of excursion.
The dimensionless time τ since the launch of the pendulum can be

computed with

τ =
∫ θ

θ0

dθ√
θ4
0 /2 − θ4/2

. (A 2)

Here, we use the following equality:
∫

dθ√
(1 − pθ2)(1 + qθ2)

= −
√

1 − k2

p

∫
dφ√

1 − k2 sin2 φ
, (A 3)

where we introduce cos φ = √
pθ and k2 = q/(p + q).

In our case, p = q = 1/θ2
0 and k = 1/

√
2. Hence, the period of oscillations of a

cubic oscillator close to criticality is (we integrated the previous equality between
θ0 = π/2 and θ = 0 to obtain a quarter period)

T = 4

√
6I
mgl

K (1/
√

2)

|θ0| = 4

√
6I
mgl

1.85407
|θ0| , (A 4)

where 1.85407 is the value of the complete elliptic integral of the first kind
K (k) = ∫π/2

0 (1 − k2 sin2 φ)−1/2 dφ for k = 1/
√

2 as can be checked right away with
MATHEMATICA.
Proc. R. Soc. A (2010)

http://www.espci.fr/
http://rspa.royalsocietypublishing.org/


Criticality of spiral spring pendulum 421

 on January 13, 2010rspa.royalsocietypublishing.orgDownloaded from 
For comparison, the period of the classical pendulum taking into account its
intrinsic geometrical nonlinearity is written as (Drazin 1993)

T = 4

√
l
g
K

(
sin

(
θ0

2

))
� 2π

ω0

(
1 + 1

16
θ2
0

)
. (A 5)

We recall the Taylor expansion near k = 0 of the complete elliptic integral of the
first kind

K (k) � π

2

(
1 + 1

4
k2 + · · ·

)
. (A 6)

References

Charru, F. 1997 A simple mechanical system mimicking phase transitions in a one-dimensional
medium. Eur. J. Phys. 18, 417–424. (doi:10.1088/0143-0807/18/6/002)

Cross, M. C. & Hohenberg, P. C. 1993 Pattern formation outside of equilibrium. Rev. Mod. Phys.
65, 851–1112. (doi:10.1103/RevMadPhys.65.851)

Drazin, P. G. 1993 Nonlinear systems. Cambridge, UK: Cambridge University Press.
Fletcher, G. 1997 A mechanical analog of first- and second-order phase transitions. Am. J. Phys.

65, 74–81. (doi:10.1119/1.18522)
Guyon, E. 1975 Second-order phase transitions: models and analogies. Am. J. Phys. 43, 877–881.

(doi:10.1119/1.9970)
Holweck, F. & Lejay, P. 1930 Un instrument transportable pour la mesure rapide de la Gravité.

C. R. Acad. Sci. 190, 1387–1388.
Holweck, F. & Lejay, P. 1931 Perfectionnements à l’instrument transportable pour la mesure rapide

de la gravité. C. R. Acad. Sci. 192, 1116–1119.
Holweck, F. & Lejay, P. 1934 Mesures relatives de la Gravité au moyen du Pendule élastique inversé.

J. Observateurs 17, 109. http://adsabs.harvard.edu/full/1934JO.....17..109H
Larmor, J. 1893 On critical or ‘apparently neutral’ equilibrium. Proc. Camb. Phil. Soc. IV,

Pt VI, 7p.
Lasic, S., Planinsic, G. & Torzo, G. 2001 Torsion pendulum: a mechanical nonlinear oscillator. In

Proc. Int. GIREP Semin. Developing Formal Thinking in Physics, Udinese, Italy, 2–6 September
2001. Udinese, Italy: Forum Editrice Universitaria Udinese. http://www.padova.infm.it/
torzo/torsion_GIREP.pdf

Mancuso, R. V. 2000 A working mechanical model for first- and second-order phase transitions
and the cusp catastrophe. Am. J. Phys. 68, 271–277. (doi:10.1119/1.19403)

Milotti, E. 2001 Nonlinear behaviour in a torsion pendulum. Eur. J. Phys. 22, 239–248.
(doi:10.1088/0143-0807/22/3/307)

Peters, R. D. 1995 Chaotic pendulum based on torsion and gravity in opposition. Am. J. Phys. 63,
1128–1136. (doi:10.1119/1.18019)

Rousseaux, G. 2009 On the bead, hoop and spring (BHS) dynamical system. Nonlinear Dyn. 56,
315–323. (doi:10.1007/S11071-008-9407-6)

Sconza, A. & Torzo, G. 2005 The torsion pendulum as a tool to study non-linear oscillations and
the transition to deterministic chaos. Physics teaching and learning. In GIREP book of selected
papers dedicated to the memory of professor Arturo Loria (eds M. Michelini & S. Pugliese
Jona). Udinese, Italy: Forum Editrice Universitarìa Udinese. http://www.padova.infm.it/torzo/
TorsionPendulum.pdf
Proc. R. Soc. A (2010)

http://dx.doi.org/doi:10.1088/0143-0807/18/6/002
http://dx.doi.org/doi:10.1103/RevMadPhys.65.851
http://dx.doi.org/doi:10.1119/1.18522
http://dx.doi.org/doi:10.1119/1.9970
http://adsabs.harvard.edu/full/1934JO.....17..109H
http://www.padova.infm.it/torzo/torsion_GIREP.pdf
http://www.padova.infm.it/torzo/torsion_GIREP.pdf
http://dx.doi.org/doi:10.1119/1.19403
http://dx.doi.org/doi:10.1088/0143-0807/22/3/307
http://dx.doi.org/doi:10.1119/1.18019
http://dx.doi.org/doi:10.1007/S11071-008-9407-6
http://www.padova.infm.it/torzo/TorsionPendulum.pdf
http://www.padova.infm.it/torzo/TorsionPendulum.pdf
http://rspa.royalsocietypublishing.org/

	On the critical equilibrium of the spiral spring pendulum
	Introduction
	Theoretical context
	Several behaviours
	The fold catastrophe and its associated cusp

	Numerical validations
	Experimental validations
	Conclusion
	References




