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Experimental demonstration of the supersonic-subsonic bifurcation in the circular jump:
A hydrodynamic white hole
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We provide an experimental demonstration that the circular hydraulic jump represents a hydrodynamic white
hole or gravitational fountain (the time reverse of a black hole) by measuring the angle of the Mach cone created
by an object in the “supersonic” inner flow region. We emphasize the general character of this gravitational
analogy by showing theoretically that the white hole horizon constitutes a stationary and spatial saddle-node
bifurcation within dynamical-systems theory. We also demonstrate that the inner region has a “superluminal”
dispersion relation, that is, that the group velocity of the surface waves increases with frequency, and discuss
some possible consequences with respect to the robustness of Hawking radiation. Finally, we point out that our
experiment shows a concrete example of a possible “trans-Planckian distortion” of black or white holes.
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I. INTRODUCTION

A vertical fluid jet impacting on a horizontal plate forms,
within a wide range of parameters, a thin layer that expands
radially and is surrounded by a sudden circular hydraulic jump.
The first modern description of this phenomenon dates back
to Lord Rayleigh [1], who developed a momentum-balance
theory to describe it but did not take viscosity into account.
The standard theory for viscous fluids is due to Watson [2] and
has been further improved through the inclusion of surface
tension by Bush and Aristoff [3]. The circular jump is an
intricate phenomenon of fluid dynamics: while it suffices
to open a kitchen tap to observe it, the theory describing
it becomes tremendously complicated for all but its most
simple applications. For example, the appearance of more
exotic forms such as polygones [4], through variations of the
surface tension [5] or when the liquid flows over microtextured
surfaces [6], has been studied experimentally but a solid
understanding at the theoretical level is still in its infancy.
Even for the simple circular jump in a viscous fluid with
non-negligible surface tension, predictions for the jump radius
based on the standard Watson-Bush theory or from a recent
and more general description based on lubrication theory [7]
lead to rather involved expressions that, at low flow rates, only
approximately agree with experiments.

Here, we are concerned with a surprising application of
the circular hydraulic jump with respect to some of the
most exotic objects thought to populate our universe: black
holes. Indeed, the circular jump is assumed to constitute
an effective white hole (the time reverse of a black hole)
for waves propagating at a speed c on the surface of the
fluid (c = √

gh in the shallow-water gravity wave limit,
with h the fluid height and g the gravitational constant).
Theoretically, it is hypothesized (following Rayleigh) that
flow decelerates across the jump from a supercritical flow
in the inner region—where the radial fluid velocity at the
surface vs

r is such that vs
r > c, so that surface ripples can only
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propagate downstream—to a subcritical flow outside, where
vs

r < c and hence the ripples can propagate in both directions.
Here, supercritical and subcritical typically refer to the value
of the Froude (or Mach) number, Fr = vs

r /c. The jump would
therefore constitute a one-directional membrane or white hole:
surface waves outside the jump cannot penetrate into the inner
region; they are trapped outside in precisely the same sense
that light is trapped inside a black hole. This analogy can
formally be written in relativistic language, as demonstrated
by Unruh and Schützhold for long gravity waves effectively
propagating in one dimension [8] and applied to the circular
jump by Volovik [9,10]. The essential point is similar to the
case of acoustic black holes [11] and other examples of analog
gravity [12]: the propagation of these surface waves obeys a
generalized d’Alembertian equation in which the intervening
curved-space-time metric is identical (modulo a—physically
irrelevant—global prefactor 1/c2) to the (2 + 1)–dimensional
Painlevé-Gullstrand-Lemaı̂tre (PGL) form of the well-known
Schwarzschild metric, which describes black or white holes in
relativity [13]. Indeed, the line element for the circular jump
is

ds2 = 1

c2

[[
c2 − (

vs
r

)2]
dt2 + 2vs

r dt dr − dr2 − r2dφ2], (1)

where the surface wave propagation speed c plays the role
of the speed of light in gravity, while the radial surface flow
velocity vs

r corresponds to the local velocity of a freely falling
observer in the case of gravity. The PGL metric,

gμν =
(

c2 − (
vs

r

)2
vs

r

vs
r −I,

)
(2)

where I is the unit matrix, transforms into the Schwarzschild
form through the coordinate transformation dt̃ = dt +
dr vs

r /[c2 − (vs
r )2]. The condition gtt = 0 for a horizon in

the nonrotating case becomes simply c = vs
r . It is in this

precise sense that the circular jump is believed to constitute
the hydrodynamical analog of a white hole or “gravitational
fountain.”
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However, despite the passage of nearly a century since
Rayleigh’s description, an explicit experimental proof that the
transition from a supercritical to a subcritical flow occurs
precisely at the jump, and that the jump hence constitutes
a white hole horizon, has so far not been provided. Two
strategies could be pursued to provide such a proof. First, one
could measure vs

r and c separately and compare their values.
Some measurements of the surface velocity exist (see, e.g.,
Ref. [14]). But these are rather sparse for the inner region. This
is probably due to the high value of the speed of flow inside
the jump and the complicated nature of its full profile (which
could also have an important nonradial component). Moreover,
the extreme thinness of the fluid film, typically thinner than
a particle image velocimetry laser sheet, means that such
imagery methods should be handled with care. Even more
complicated is the measure of the surface wave propagation
velocity c. A direct measure could be performed by sending
and tracking surface waves. Possible complications include the
dispersive nature of c, as well as the “backreaction” problem
well known in gravity, that is, the influence of the wave itself on
the geometry of the jump. Alternatively, one could measure the
height h of the fluid and, in principle, derive c as c = √

gh plus
possible dispersive corrections. But this induces an additional
approximation, which one would prefer to avoid. From the
point of view of the white hole analogy, the second and better
strategy is therefore to measure the ratio vs

r /c directly. Our
demonstration relies on the Mach cone associated with the
supercritical flow in the inner region of the jump.

It is well known that the envelope of the subsequent wave
fronts emitted by an object moving at a supersonic speed forms
an observable cone, the Mach cone [15]. The half-angle θ

(or Mach angle) of the cone can be related to the speed of
sound cso and the propagation velocity v of the object through
simple trigonometry: sin θ = cso/v = 1/M , with M the Mach
number. The same holds true for a point-like object at rest on
the surface of a supercritical fluid flow (vs

r > c), with c now
the propagation speed of surface waves. Measurements of the
Mach angle therefore allow one to trace the ratio vs

r /c in the
supercritical region. θ should exactly equal π/2 at the hydrody-
namic white hole horizon, where c = vs

r , and become complex
(the Mach cone disappearing) in the subcritical region.

II. EXPERIMENTS

Our experiment to demonstrate the presence of a hydrody-
namic horizon consists essentially of the following. Silicon oil
was pumped from within an aquarium through a steel nozzle
and impacted on a PVC plate placed inside the aquarium. The
silicon oil has a high viscosity (ν = 20 cS ≈ 20νwater), a low
surface tension (γ = 0.0206 N/m ≈ 1

3γwater), and a density
ρ = 950 kg/m3. The high viscosity allows maximization of
the laminarity of the flow. It also guarantees that we create
type I circular jumps (with a smooth unidirectional surface
flow) over a larger range of flow rates rather than type II
jumps (which exhibit surface flow reversal currents near the
jump radius) or even turbulent jumps like in water (see,
e.g., Ref. [3]). Such effects might be interesting from a
fluid mechanics point of view but are detrimental to the
gravitational analogy, which assumes a smooth propagation of
the surface waves. A low surface tension, moreover, guarantees

FIG. 1. (Color online) Dependence of the jump radius Rj [filled
(red) dots] and the fluid jet radius rjet [solid (blue) line, theoretical
curve; open (blue) diamonds, experimental values measured at a
distance z = 13 mm downward from the nozzle] on the flow rate
Q. Experimental parameters: distance from nozzle to impact plate
d = 76 mm; nozzle radius a = 1.925 mm; external fluid height
far from the jump H = 0 mm. Inset: Cross-section diagram of the
circular jump.

that we avoid polygonal or more exotic jump shapes [5].
The jump that we obtain therefore corresponds to the most
straightforward white hole analogy, namely, the circularly
symmetric (nonrotating) white hole. Figure 1 shows a typical
example of the jump radius Rj and the radius of the fluid jet
rjet versus the flow rate Q. The theoretical rjet curve is obtained
through rjet/a = (1 + 2gzπ2a4/Q2)−1/4, where a is the nozzle
radius and z the downward distance from the nozzle.

A needle penetrates the flow surface at a varying distance
from the jet’s impact point (the center of the circular jump)
(see Figs. 2 and 3) to create the Mach cones. We measure
the Mach angle as close as possible to the needle. Our main
results, the Mach angles θ as well as the resulting relation

FIG. 2. (Color online) Mach cone in a circular hydraulic jump.
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FIG. 3. (Color online) Measurements of the Mach angle θ from
pictures taken with an overhead camera. A needle is placed inside
the flow at varying distances from the center of the jump. (a) Mach
cone near the center of the jump. (b) Mach cone near the edge of
the jump. (c) The Mach cone disappears just outside the jump. The
blurry object in the bottom part of the pictures is the nozzle holder.

vs
r /c, are presented in Fig. 4. We have checked that these do

not depend qualitatively on H , a, d, or Q, as long as one
remains within a stable type I jump regime. Inside the jet
impact zone (r < a), we expect vs

r � c, followed by a steep
increase for r � a until a certain value vs,max

r , since the fluid
impacts vertically before being converted into a radial flow.
The field of vision of our experimental setup starts near this
maximum (see Fig. 4), corresponding to a Mach angle θ of
roughly π/10. From there, θ smoothly increases to about π/4
at approximately three-fourths of the jump radius and then

FIG. 4. (Color online) Mach angle θ [(red) triangles] and ratio
vs

r /c [(blue) circles] as a function of the distance r from the center
of the jump. Dashed vertical lines represent the nozzle radius a and
the jump radius Rj . Experimental parameters: external fluid height
H = 0 mm; nozzle radius a = 4.75 mm; distance from nozzle to
impact plate d = 62.5 mm; flow rate Q = 240 L/h.

rapidly opens up, to reach exactly π/2 near the ridge of the
jump. This implies vs

r /c = 1 and, hence, constitutes clear proof
that the jump indeed represents a white hole horizon for surface
waves, independently of whether c is strictly equal to

√
gh or

modified by dispersive corrections. Converting the Mach angle
to vs

r /c shows that the latter ratio decreases mainly far from the
jump, well inside the inner region. The critical point vs

r /c = 1
is actually reached in a very smooth way. This is in curious
contrast to the standard theoretical models in fluid mechanics,
which describe the circular jump as a shock wave and therefore
prescribe that the critical point itself should lie within a sharp
(and, in models without viscosity, discontinuous) transition
from a supercritical to a subcritical regime (see, e.g., Ref. [16]).
It is not clear whether this smooth transition to the critical
point is a genuine property of the jump itself or a consequence
of the perturbation of the flow pattern due to the insertion
of the needle, which somehow smooths out the shock wave
(or shifts its position). It should be noted that a perturbation
of the flow pattern can indeed be identified with the naked
eye when the needle penetrates the flow all the way down
to the plate. However, we have very carefully avoided this
by having the needle penetrate only the surface of the flow.
If this smooth transition is a genuine property of the jump,
then the expected sharp transition in the velocity profile might
still occur just beyond the critical point. This could suggest
that the jump is actually a consequence of the existence of
a horizon, rather than vice versa. If the smoothness of the
transition is due to a perturbation of the original flow pattern
(and hence unavoidable in the kind of experiment that we
have carried out), then this would constitute an example of a
“trans-Planckian” distortion and reconstruction, of which we
discuss a more evident example in the final section here.
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In any case, it is particularly striking that this white
hole horizon can be identified with the naked eye, even
without observing the actual blocking of surface waves.
Moreover, contrary to most other examples of analog gravity,
the horizon forms rather spontaneously, without extraordinary
engineering.

III. SADDLE-NODE BIFURCATION

The fact that the circular jump represents a white hole
horizon illustrates that the concept of horizons is not limited
to relativity. This generality goes even further. Note that the
Mach angles θWε[0,π/2] and θB = π − θW would lead to the
same value of vs

r /c, with θW corresponding to a white hole (a
source) and θB to a black hole (a drain). At the horizon itself,
both solutions merge: θW = θB = π/2. This is an example
of a saddle-node bifurcation in dynamical systems theory,
as was established earlier in the deep-water gravity-wave
regime [17]. Indeed, using an asymptotic development of
arcsin(x) for x → 1, one can write in the near-horizon region
(for shallow-water waves and also, e.g., for acoustic waves in
a de Laval nozzle): θ = arcsin(1 − ε) ≈ π/2(1 − √

ε), where
ε = 1 − c/vs

r . Inverting this relation, one obtains

ε −
(

π/2 − θ

π/2

)2

= 0. (3)

This is precisely the canonical expression of the stationary
normal form for a spatial saddle-node bifurcation, with ε

the control parameter and θ the order parameter [18]. It
implies that the near-horizon behavior inside a black or white
hole not only is a common feature of typical analog gravity
systems involving sound or surface waves but belongs to the
universality class of saddle-node bifurcations in a dynamical-
systems description.

IV. DISPERSION RELATION

The dispersion relation for gravity-capillary surface waves
is (ω − Uk)2 = (gk + γ

ρ
k3) tanh(kh) [15]. In the shallow-

water limit kh � 1, one can tentatively write

(ω − Uk)2 = c2k2 + c2

(
l2
c − h2

3

)
k4 + O(k6), (4)

with lc =
√

γ

ρg
the capillary length. At low wave numbers k, a

relativistic dispersion is indeed recovered. For intermediate k

values, the dispersion can be either normal or anomalous—in
relativistic language, “subluminal” or “superluminal” (i.e.,
the group velocity cg ≡ dω

dk
decreases or increases with k,

respectively), with a critical transition depth htrans = √
3lc

(see also Ref. [19]), corresponding to an inflection point
d2cg/dk2 = 0 at k = 0. For our silicon oil, htrans ≈ 2.6 mm
(see Fig. 5). At higher k values, Eq. (4) can no longer be
trusted, and the dispersion becomes superluminal, irrespective
of the value of h, asymptoting to cg ∝ √

k. Within the limits
of the stable type I circular jump regime, the inner region
depth hin turns out to be always of the order of 1 mm in
our experiments, and hence hin < htrans. For the type I jump,
hin is highly insensitive to the external fluid height H , which
can be imposed artificially, and varies only slightly with the

FIG. 5. (Color online) Group velocities (at U = 0) for different
values of the fluid height h. From bottom to top at low ω: h = 1 mm
[dashed (red) line]; h = 2.5 mm [dashed-dotted (green) line]; 3 mm
[dotted (blue) line]; 5 mm [solid (brown) line].

flow rate, in accordance with earlier observations with other
fluids [14,20]. Likewise, in water, the fluid depth in the inner
region is typically �0.5 mm [20], while the transition height
that marks the appearance of a subluminal frequency range
is htrans ≈ 4.7 mm. We conclude that the inner region of
the circular jump naturally exhibits a superluminal dispersion
relation.

When increasing the external fluid height H , care must be
taken not to destabilize the type I jump (or drown it altogether).
We have verified that H can indeed be increased beyond htrans

within the limits of the white hole analogy. The outer region
can therefore be tuned to be in a super- or in a subluminal
regime by varying the external fluid height. This opens several
interesting prospects. First, it suggests a new scenario for
quantum gravity phenomenology, in which the homogeneity
of the dispersion relation is broken and quantum-gravitational
effects at the horizon would lead to a separation between
two regions with different dispersions. Second, it means that
a stimulated Hawking signal (a thermally correlated pair
of positive- and negative-frequency waves emanating from
the horizon when this is hit by an incoming wave) should
be detectable in the subluminal outside region, much as in
Ref. [21] (see also Refs. [22] and [23]). However, a second such
pair should also form toward the superluminal interior (see,
e.g., Ref. [24]). It is an open question whether these inner and
outer pairs should be cross-correlated. Third, another prospect
is the following. When the fluid regime becomes supercritical,
friction with a fixed boundary leads to amplification of high-k
modes (rather than damping, as in the normal vs

r < c regime).
This effect is associated with the occurrence of negative energy
modes (ω − Uk < 0) and is called the Miles or ergoregion
instability. If there exists a trans-Planckian preferred frame
in gravity, then friction with respect to this trans-Planckian
“ether” could lead to a similar instability. It has been suggested
that such a Miles or ergoregion instability could affect the
Hawking process by distorting the “thermal” balance between
negative- and positive-frequency modes on opposite sides of
the horizon [24] or that the Miles instability could actually
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become the dominant mechanism of dissipation of the black
hole [9], reducing the Hawking radiation to a theoretical
curiosity. Comparison of the inner and outer correlated pairs
in the circular jump could provide valuable information about
this competition and its influence on the robustness of Hawking
radiation.

V. TRANS-PLANCKIAN DISTORTION

A related explicit example of a “trans-Planckian distortion”
of the white hole is already apparent in our current experi-
ment. The needle represents a trans-Planckian object in the
analog gravity system, since it is not subject to the effective
hydrodynamic gravity and creates its own preferred reference
frame. The presence of the needle strongly distorts the white
hole horizon (see Fig. 2). The original horizon (the jump)
is completely destroyed along the arc corresponding to the
position of the needle and reconstructed along the Mach cone,

opening up slightly toward the exterior, and reconnecting with
the original horizon at the jump radius. This reconstruction
process is accompanied by two jets of radiation propagating
radially outward from the points of reconnection. Similar
distortions could be crucial, for example, in brane-cosmology
models in which the brane on which we live is intersected by
higher-dimensional objects or other branes.
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