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This study deals with the observation of sand ripples in a circular geometry under oscillatory flow. We
characterize the observed patterns as a function of the excitation parameters. We report the time evolution of
the corrugated front invading the flat bed. These experiments reveal unambiguously, because of the gradient of
shear stress, the existence of two separated thresholds: one for grain motion and the other for the appearance
of ripples. In addition, we display the phase diagram of this instability as a function of the Froude number and
a Reynolds number.
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Ripples are sand patterns which are built by the to and fro
motion induced by surface water waves at the fluid-granular
interface on the beach. Historically, the first laboratory ex-
periments on underwater sand ripples were performed by De
Candolle in 1882 and Darwin in 1883 using oscillating cir-
cular tanks filled with water, at the bottom of which they put
a layer of sand �1,2�. More recently, Fermigier and Jenffer
used the same circular geometry �3�. Bagnold �4�, who de-
signed a setup with an oscillating plate covered by a layer of
sand in static water, observed two types of pattern: rolling-
grain ripples �small patterns with grains moving back and
forth at the interface between sand and water� and vortex
ripples �larger patterns with a vortex detaching from the crest
taking out grains from the neighboring sand structures�. Un-
derwater rolling-grain ripples always evolve toward vortex
ripples, and both feature a transient vortex �5–9�. It seems
that De Candolle and Darwin observed only vortex ripples
whereas Fermigier and Jenffer saw both rolling-grain and
vortex ripples �3�. In the context of a more general experi-
mental study on underwater ripples in our laboratory, we
reproduce these experiments in a very controlled manner in
order to obtain quantitative results especially about the onset
of the instability.

The principle of the setup is similar to the one used in �3�.
A bottom plate with a circular tank of radius R fixed over it
is driven by a centered axis which oscillates azimuthally at a
fixed displacement amplitude A and frequency f . We put in a
layer of height h of monodisperse spherical glass beads of
diameter d �relative density with respect to water �s /� f
=2.49�. Then we fill the tank with water �kinematic viscosity
�=10−6 m2 s−1� of height H. This closed receptacle pre-
serves mass conservation and the circular geometry gives
spatially periodic boundary conditions. Our setup is made of
a cylinder in Altuglass of radius Rext=11 cm and of height

hc=19.5 cm. The circular bottom plate is made of polyvinyl
chloride. The circular neon lamp used for lighting is movable
in height and avoids optical inhomogeneities along the pe-
rimeter. Pictures are taken with a charge-coupled device
camera which is mounted on the top of the oscillating setup.
Due to the oscillatory motion of the tank and for both the
plane and cylindrical geometry, a Stokes boundary layer of
thickness �=�� /�f is present at the interface between the
water and the bed of glass beads and is at the origin of ripple
formation �5,6�. In addition, a similar boundary layer exists
on the inner vertical face of the circular tank but does not
contribute to the observed radial patterns. This kind of ge-
ometry was studied recently because of the occurrence of
other granular instabilities and secondary flows �10,11�. We
will not perform a detailed calculation of the secondary flow
created by the granular bed oscillation and spin-up effects,
but it is easy to predict the existence of a toroidal pulsed
structure, as was studied in continuous rotation in �12�. The
trajectories of particles show that the radial component of the
flow structure is very weak. This circular flow induced by the
walls puts the grains in movement and the azimuthal velocity
varies linearly with the radius. Hence, we have a system
where one can observe the influence of a radial gradient of
shear amplitude.

The visualizations of the sand-water interface with the
camera on top are shown in Fig. 1. In Fig. 1�a� we distin-
guish the flat initial state. After starting the oscillations, we
can observe at the outer region of the disk �r=Rext� a first
type of structure that we identify as rolling-grain ripples in
Fig. 1�b�. In Fig. 1�c�, after a while, we notice the transition
from rolling-grain ripples to deeper structures growing in-
ward, which are vortex ripples. Then, in Fig. 1�d�, the final
state is characterized by the presence of an inner circle with-
out structures, and radial ripples.

At a distance r from the tank center, the mean wavelength
of the radial vortex ripples is obtained as the ratio between
the perimeter P=2�r and the number of ripples N. The ex-
istence of a final radial state implies that the number of vor-
tex ripples is constant whatever is the radius r �dislocations
which are features of transitory regimes or of three-
dimensional �3D� effects are absent here�, �� f�r��= P

N = 2�r
N
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=const�r. Moreover, the amplitude of motion is propor-
tional to the radius. One concludes that the final wavelength
of the vortex ripples is proportional to the oscillations’ am-
plitude � f�r��A, as predicted by Longuet-Higgins �13� and
observed in many experiments, especially in �5� where � f
=4 /3A. This result, inherent to the circular geometry, was
observed as early as 1882 by De Candolle �1�. Hence, the
wavelength increases linearly from the instability threshold
to the external radius Rext �Fig. 1�d��. These observations
strengthen the argument about the vortex ripple wavelength
selection, where �	A, and clarify the debate about the final
wavelength of vortex ripples, as several correlations have
been proposed for the final wavelength of vortex ripples
�some with a proportionality law� �14�.

Figure 2 shows several views of the final vortex ripple
state. As noticed before, an internal circular zone without
structure is present �Fig. 2�a��. However, small deformations
�which we call streaks in the following� induced during the
flattening procedure are present but they do not evolve with
time. Hence, we are sure that no transport is present below

the inner radius. In addition, one can see an accumulation of
dust in the very center of the latter zone. A rotating fluid in a
circular tank features a secondary pulsed flow directed from
the center toward the walls inside the boundary layer, which
deposits particles in the center. If we focus on the edge of the
nonstructured region �Figs. 2�b� and 2�c��, we can see two
characteristic radii: the first one R0 corresponds to the ab-
sence of grain motion for r�R0; the second one R1 is situ-
ated at the end of a descending slope which starts on a kind
of promontory delimited by the first radius R0. Between R0
and R1, the absence of the initial streaks shows the existence
of grain motion but without ripple formation: the streaks
disappear throughout the ripple formation process by both
the grain motion and the inner invasion of the patterns. This
demonstrates the existence of two distinct thresholds for os-
cillating flow over a sand bed, which we confirmed by image
subtraction between successive pair of pictures taken with
the camera �not reported here�. R0 corresponds to the thresh-
old for grain motion whereas R1 corresponds to the stability
threshold for the periodic patterns of ripples. Hence, theories
of ripple formation should distinguish between the two. Very
little experimental evidence of this gap between thresholds
has been published so far �15–17�. Moreover, the observation
of the region close to R1 reveals a “shark tooth” form of the
ripples �Fig. 2�d��. From these observations we can estimate
the critical Shields number to put grains in motion. Indeed,
the Shields number, which is the ratio between the shear
force on the grains and their apparent weight, is defined by
Sh�r�� ��r�d2

	�gd3 � 
A�r�f
	�gd� �

� f

	�gd�1/2f3/2 Aext

Rext
r. A�r�= �rAext� /Rext is

the local amplitude of oscillation expressed as a function of
the external radius Rext and amplitude Aext. The velocity gra-
dient in the shear stress ��r� is estimated from the ratio of the
velocity U�2�Af and the Stokes boundary layer thickness
�=�� / ��f�. It is legitimate to ask if the grain transport in the
descending region could not be due to a secondary flow, with
the grains transported radially beyond R1. However, if the
equivalent radial Shields number �secondary flow plus cen-
trifugal force� were bigger than the azimuthal one, one
would observe an inclined surface with an increased level
toward the outer radius. We observe the contrary. Moreover,
one may wonder if the radius R1 really corresponds to the
stability threshold as one would measure it in a plane geom-
etry. As a matter of fact, it is possible that the threshold can
be modified by the fact that the vortex associated with the
vortex ripples could diffuse toward the center of the tank by
viscosity. If this were the case, the size of the diffused layer
would scale with the Stokes layer, which is negligible com-
pared to the radius R1, which is 100 times larger. Moreover,
vortex ripples correspond to finite-amplitude perturbations of
the sand bed related to the inertial separation of the flow, and
it is possible that the stability threshold could be different
than in the case of small rolling-grain ripples. In any case,
the circular geometry is a good candidate in order to study
with more detail the threshold for both grain motion and
pattern formation and work is in progress in order to com-
pare with the plane geometry �17�. We would like to under-
line that previous authors have reported the existence of two
thresholds in plane geometry �15,16�. However, the time of
observation is not given in their experiments. Indeed, the

FIG. 1. Primary patterns seen from above with an attached cam-
era in the setup: �a� initial state, �b� rolling-grain ripples �after 50 s�,
�c� transition �after 100 s�, and �d� saturated vortex ripples �after
103 s�. Parameters are f =1 Hz, A=3 cm, d�110 
m. Rf is the ra-
dius of the ripple front. Rext is the radius of the cylindrical tank.

FIG. 2. �Color online� Description of the final state after 18 h:
�a� threshold for movement, �b� dust in the center of the tank, �c�
zoom on both internal radii, and �d� zoom on the internal part of a
ripple.
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rolling-grain ripples can appear on very long time scales,
hours or even days. The major advantage of the circular ge-
ometry is to impose a gradient of excitation which allows us
to determine both thresholds accurately.

We follow the time evolution of the position of the insta-
bility front Rf associated with one ripple �Fig. 1�, which
grows inward with time until it reaches the critical radius
�Rf =R1�. A camera placed above the cylindrical container
takes a picture every 15 s and we measure the front position
Rf of one ripple on each picture. Rf

max is defined as Rf after
tmax=2�105 s �=2.3 days� of evolution. It is measured at
the end of each experimental run but we present only mea-
surements in the initial stage of growth �t� tmax�. We con-
sider that, from the experimental point of view, Rf

max�R1.
Figures 3 and 4 show three different time evolutions of
�Rext−Rf� / �Rext−Rf

max�. This parameter is proportional to the
radial length of the ripples and is relevant since the ripples
grow toward the center of the tank.

The parameter set in Fig. 3�a� is close to the threshold of
the instability �see below�. From the beginning of the experi-
ment Fig. 3�a� to t�2.5�103 s we observe the initial
growth of the rolling-grain ripples �phase I�. Then, we ob-
serve quasistability of the rolling-grain ripples for 7
�103 s �phase II�. During that time, the wavelength is con-
stant as is Rf. At t�104 s, the transition from rolling-grain

ripples to vortex ripples begins �phase III�. We recall here
that the initial flat bed is prepared with a flattening procedure
�6�. This flattening procedure must leave no defects �bump or
hole� in the sand, since any defect with a sufficient height
�4,18� initiates a transition from rolling-grain ripples to vor-
tex ripples with propagating fronts. Furthermore, a defectless
sand surface is a necessary condition to observe the plateau
�phase II� for a long time. Any defect, even if not big enough
to trigger the transition to vortex ripples, can modify the
ripple dynamics and hide the plateau. As the initial size of
the rolling-grain ripples is tiny, to obtain precise experimen-
tal results we zoom in on the active zone of the initial stages
of growth. The second part of the dynamics is described
using another experiment with the same parameters �Fr,Re��,
where we film the whole apparatus. In other experiments
farther from the threshold, the plateau with Rf =const �phase
II� is absent since the transition from rolling-grain to vortex
ripples is faster. With the parameter set of Fig. 3�b�, the
rolling-grain ripple state lasts approximately 200 s and vor-
tex ripples grow almost immediately. Like some other pa-
rameters, such as height and wavelength �5,6,8,9�, Rf rises
abruptly when the front of the vortex ripple instability
reaches the spot of study. In Fig. 4 we present a more de-
tailed study even nearer the onset of the instability. With
these parameters, the system exhibits a very slow dynamics.
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FIG. 3. Temporal evolution of �Rext−Rf� / �Rext−Rf
max�. The parameters are d=200�50 
m, �a� A=2 cm, f =1 Hz �Fr=2.2, Re�=71�, and

�b� A=1.5 cm, f =1.5 Hz �Fr=2.5, Re�=65�. The typical time for vortex ripple formation is 1000 s for �a� and 300 s for �b�.

2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

×103 10
1

10
2

10
3

10
40

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

I III III IIIII

(a) (b)

FIG. 4. Evolution of �a� �Rext−Rf� / �Rext−Rf
max� vs time; �b� Rf /Rf

max vs log10�t�. The parameters are d=200�50 
m, A=1.9 cm,
f =1 Hz, Fr=2.1, and Re�=67.
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If we plot Rf /Rf
max versus log10�t� we can find a logarithmic

evolution of Rf for a part of the data set �phase I in Fig. 3�. A
power-law fit gives good agreement with this data either
�Fig. 4�. An attempt to fit the growth in parameters from
Figs. 3 and 4 with an exponential saturation �1−exp�t /���
failed. The evolution of this 3D parameter �Rf� depending on
the distance to threshold is comparable with that of other 2D
parameters like the wavelength or the height; see Fig. 2�a� in
�6�. We show only the initial part of Figs. 3 and 4 but at the
end of the experiment we reach Rf

max.
On a very long time scale �	105 s� we measure two criti-

cal radii �Fig. 2� defining two thresholds. �1� The threshold
of the region with grains at rest defines the critical Shields
number to put these grains in motion �R0 in Fig. 2�; �2� at a
larger radius, in the region with grains in motion, appears the
onset of sand ripples �R1 in Fig. 2�. Let us recall that, in our
experiments, the cylindrical geometry imposes the require-
ment that the amplitude grows linearly with the radius �A
=�r�. We choose as control parameters of this instability the
Froude number Fr and the Reynolds number defined with the
boundary layer thickness Re� as in previous theoretical
works �19� and experiments �6�. These dimensionless num-

bers are defined according to Fr=
�� fA


���s−� f�gd
and Re�= U�

� = 2A
� .

As the Froude number Fr=� ��
�s−1�gdRe�

�f with s=�s /� f is
linearly dependent on Re�, we scan the phase space �Fig. 5�
of the instability by choosing f =const. This implies an ex-
ploration of the phase space on straight lines with different
slopes. In that case, both thresholds are located on the same
line �f constant with linearly varying A�. We choose to use
high frequencies �f =4.5 Hz� to stay in the low-Re� region.
We obtain tiny vortex ripples �Fig. 6�. The lower f , the lower
the slope. This enables us to obtain higher values of Re�. In
the high-Re� region, to reach the threshold of the instability
implies the use of a big amplitude with decreasing frequency.
In Fig. 5, we display results both from published experiments
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FIG. 5. �Color online� Final critical radius and moving grains threshold compared with Shields threshold in Re� -Fr diagram. Experiments
made at a given frequency have outer and critical Re� -Fr on the same line. This is not the case for experiments at constant amplitude and
varying frequency. The data of Rousseaux et al. and Blondeaux are extracted from �6� and �19�, respectively.

FIG. 6. Side view and front view of vortex ripples using low-
amplitude high-frequency parameters: d=200�50 
m, A=0.3 cm,
f =4.5 Hz, Re�=22, and Fr=1.5.
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in an annular geometry �6�, and from current experiments in
a circular geometry, which show that thresholds for the in-
stability are similar. In addition, we show a line of constant
Shields number. We choose Sh=0.05 as a typical value rec-
ognized in the literature for the onset of grain motion �14�.
To assess the effect of frequency, we made experiments at a
constant outer amplitude. In that case �A=const�, the Froude
number can be written as a quadratic function of Re�: Fr
= �

2��s−1�gd
1
ARe�

2. For A=const, we remarked visually that the
more the frequency increases the more the thresholds �grain
movement and instability onsets� are separated, as displayed
in Fig. 7, where a constant amplitude is used; we deduced the
critical Shields number experimentally, which is around 0.08.
However, as we reach amplitudes such that A	Rext, there is

a competition between two length scales. In that case, the
results show that the ripples reach a critical radius lower than
expected, which is also the case for moving grains �Fig. 5�.

As a conclusion, we looked for the evolution of a granular
bed submitted to an oscillating flow. We demonstrated that
the wavelength is proportional to the amplitude of oscillation
in the final state of the vortex ripples regime using a circular
geometry. This scaling was reported by De Candolle as early
as 1882 with a similar setup. In our study we looked for the
stabilization of the inner radius with time and, in conse-
quence, we can really separate two different thresholds �one
for grain movement and the other for ripple stability� in the
same experiment. Hence, we report experiments where one is
sure to have reached the final state. Indeed, among the large
numbers of correlations which have been proposed in the
literature so far, the measurements do not prove that one has
really reached a final state because of the side visualizations
with planar geometry in wave tanks. The influence of cen-
trifugal forces and curvature seems to invalidate the use of
circular geometry to study the initial streak formation, indi-
vidual grain motion, and secondary sand instabilities. How-
ever, we think that these effects do not invalidate the gener-
ality of our results, since they compare well with previous
findings in planar geometries.
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f =1 Hz �Fr=2.2, Re�=71�, f =1.4 Hz �Fr=3.1, Re�=84�, and f
=2 Hz �Fr=4.5, Re�=100�. The number of vortex ripples is con-
stant as raising the frequency sets the parameters farther from the
threshold of the instability �see Fig. 5�. The experimental critical
Shields number for grain motion is �from left to right� 0.08, 0.08,
and 0.07.

OSCILLATION-INDUCED SAND RIPPLES IN A … PHYSICAL REVIEW E 78, 016302 �2008�

016302-5


