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Physical distinction between rolling-grain ripples and vortex ripples: An experimental study
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We have performed an experimental study of the transition of rolling-grain ripples toward vortex ripples. In
particular, we have looked for the influence of the grains’ diameter, the frequency of oscillation, and the grains’
cohesion. We demonstrate that the rolling-grain ripples are transient patterns which do appear as soon as we are
close to the threshold for grain motion, whereas vortex ripples are always the final patterns observed and are
the only patterns observed if one is far from the threshold for grain motion. Our results show that the
“elasticity” (i.e., the tendency to modify the wavelength by either compression or dilatation) of the vortex
ripples explains several discrepancies with respect to the observed evolutions and measurements reported so far

in the literature.
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INTRODUCTION

When a fluid oscillates over sand grains, rippling patterns
appear. The canonical examples are the ripple marks encoun-
tered close to the seashore. In order to reproduce such struc-
tures in the laboratory, Bagnold employed in 1946 an oscil-
lating plate covered with a layer of sand in static water. He
observed two types of ‘“stable” pattern [1]: rolling-grain
ripples (small patterns with grains moving back and forth at
the interface between sand and water) and vortex ripples
(larger patterns with a vortex detaching from the crest scoop-
ing grains from the neighboring sand structures). Since 1946,
the two patterns have been treated independently until re-
cently when it was observed that rolling-grain ripples be-
come vortex ripples [2]. In this paper, we propose to assess
Bagnold’s distinction.

In this work, we examine the transition from a flat bed to
a rippling pattern. In particular, we look for the range of
parameters allowing us to observe rolling-grain ripples for a
long time and their transition to the vortex ripple regime. We
modify mainly the diameter of the glass beads, their cohe-
sion, and the oscillation frequency.

EVOLUTION OF A FLUID-GRANULAR INTERFACE
UNDER AN OSCILLATING FLOW

We use two similar setups which differ by their size. The
experimental setups, measurements, and procedures were al-
ready described in [3] for the old setup and in [4] for the new
one (Fig. 1). Essentially, it consists in an alternative arrange-
ment of Bagnold’s experiment but which does not induce
different results: a layer of sand (spherical glass beads in
practice) resting on a plate and immersed in a static water of
kinematic viscosity v is put into oscillation at a definite am-
plitude A (a few centimeters) and frequency f (around 1 Hz).
The grains of diameter d (between 65 and 325 um) are
sheared b% the fluid. More precisely, a viscous boundary
layer 6=+/v/(7f) develops at the interface between the sand
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and the water. If d<<J, the fluid flow is similar to the one
obtained in the case when the bed is static and the fluid is in
motion (see the additional note by Taylor in an Appendix of
Bagnold’s paper [1]). Then, subsequent grain movements in-
duce the appearance of a periodic deformation of the
granular-fluid interface that we identify with ripples. We de-
sign a cylindrical geometry in order to have periodic bound-
ary conditions. Indeed, the layer of sand fills the gap between
two concentric cylinders attached to a circular plate. Water is
then added and we close the entire setup with a top plate
(that is, the two cylinders) which is made to oscillate in a
sinusoidal way by a brushless motor. Above the bed (4 cm in
height), the water (5 cm in height) is at rest except in the
three boundary layers: one at the interface and two on the
vertical walls of both cylinders. With respect to the last ones,
the gap (1.9 cm) between the cylinders is much more impor-
tant than the size of the boundary layers at the usual frequen-
cies used in this work (for example, 6=564 pum at f=1 Hz).

The shape of the ripples

First, let us illustrate by some pictures the definitions
given by Bagnold in his seminal papers with respect to the
shape and evolution of both types of ripples [1]. A charge-
coupled device (CCD) camera attached by a metallic arm on
the side of the new setup allows us to have access to the
forms (Fig. 2) and the dynamics of the ripples in the moving
frame of reference (Fig. 3: white and black correspond to the
crests and the troughs of the patterns; hence, the gray levels
stand for different ripple heights). As described by Bagnold,
rolling-grain ripples are small bumps of triangular shape
with a rounded crest separated by an almost horizontal inter-
face whereas vortex ripples are more pronounced triangular
patterns without a flat separation between them (Fig. 2). The
spatiotemporal diagram gives us some clues to the duration
of each ripple regimes (Fig. 3). Indeed, for the particular
parameters used in the experiments, rolling-grain ripples are
characterized by a lot of coalescence events compared to
vortex ripples which do reach a stationary state more rapidly.
We can also infer the velocity of propagation of the front of
vortex ripples (let us recall that Bagnold used the expression
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“like a disease” to denote the front propagation [1]). More-
over, a large-scale deformation of the interface is visible in
particular in the final state of vortex ripples as the mean gray
level varies with a wavelength equal to the perimeter.

Undulations of the crests

As reported by Bagnold [1], rolling-grain ripples are
granular structures which are characterized by a strong varia-
tion of the crest’s shape every half period whereas the space
between two neighboring ripples is less active. The crest is
oscillating with the flow and one cannot say that rolling-
grain ripples are truly symmetric patterns because, if we stop
the flow oscillations, the orientation of the crest is dictated
by that of the fluid before the stop. On Fig. 4, we provide a
clear picture of this process (as previously, the camera is
oscillating with the plate and we look on the side of the outer
cylinder): one distinguishes (on the spatiotemporal scale of a
horizontal line placed just above the flat part of the interface:
dark is in water and white represents sand bed protuberances
which cross the line of reference) the oscillations corre-
sponding to each half period of several crests as well as a
coalescence between two ripples (see below for details). The
cylinder curvature does not affect our results since the size of
the camera frame (2.7 cm) is much smaller than the mean
radius (13.5 cm). The same effect exists for the vortex
ripples but is less important as the protuberance is likely to
be destroyed by its resuspension due to the flow at each half
period.

THE PHENOMENOLOGY ASSOCIATED WITH THE
COALESCENCE OF RIPPLES

Figure 5 displays the coalescence by fusion of two
rolling-grain ripples. We have underlined the existence of
undulations of the crests. This undulation is symmetric if the
flow intensity is identical in both direction. When two ripples
are close together, the flow velocity slows down in the trough
between them which becomes, using the expression intro-
duced by Andersen [5], a “shadow” zone for the oscillating
flow (the flow is weaker behind the ripple, which is similar
to a backward facing step). The crests of both ripples are
likely to orient themselves toward the trough as the shear
stress created by the background flow is no longer symmetric
(Fig. 4). The grains accumulate subsequently and fill the
space between two ripples until their coalescence. Hence, an
increase of the mean wavelength is always associated with a
decrease of a local wavelength.

This type of coalescence is similar to the so-called trans-
lation mode within the thin-film community [6]. Despite the
fact that numerous examples of coalescence exist in nature,
the particular example of dewetting is particularly well docu-
mented in the literature concerning the mode of fusion. In-
deed, dewetting of a thin film on a homogeneous substrate
leads to fluid patterns with a typical length scale. The new
drops have a radius which then increases monotonically in
time through a coarsening process. One usually describes
such an evolution with a Cahn-Hilliard type of equation.
Moreover, as described in our previous work on the coales-
cence of rolling-grain ripples, the coarsening of this type of
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FIG. 2. The shape of ripples in the new setup (real scales): (a)
rolling-grain ripples; (b) vortex ripples. The parameters are f
=1Hz, A=1.5cm, and d=110 wum. The width of the images is
2.7 cm.

ripple seems to follow a logarithmic behavior as a function
of time for the mean wavelength as well as for the root mean
square of the height (without the large-scale deformation)
and this is typical of a Cahn-Hilliard coalescence in one di-
mension [3]. The thin-film community distinguishes the
translation mode for coalescence from the mass-transfer
mode. This other mode is characterized by transfers of mass
from a single pattern to its left and right neighbors contrary
to the translation mode which is mainly characterized by a
fusion of two neighboring patterns [6]. The mass-transfer
mode is a typical signature of the vortex ripples. We have
already illustrated this mode in our work on the influence of
segregation by showing the existence of the so-called cat’s
eyes patterns which demonstrate that vortex ripples swallow
their neighbors [7]. This distinction between the two modes
is very important since this is a sharp criterion in order to
separate the rolling-grain ripples from the vortex ripples. As
a matter of fact, we have shown in another previous work
that the old criterion introduced by Bagnold, that is, the ab-

1l

FIG. 3. Spatiotemporal diagram of the interface seen from the
interior of the inner cylinder in the new setup with a conical mirror.
Time is flowing downward. Same parameters as Fig. 2 and a final
time of roughly one day.

FIG. 4. Spatiotemporal diagram in the new setup (with the em-
barked camera on a side of the outer cylinder) along a horizontal
line parallel to the initial flat interface and just above it. Time is
flowing upward. Same parameters as Fig. 2 and a duration of about
5 s. The crests of the patterns are inclined in the opposite direction
twice per period.

sence of a vortex over rolling-grain ripples is questionable as
a viscous eddy is present over the rolling-grain ripples at
each flow reversal [4]. Hence, in some sense, rolling-grain
ripples are vortex ripples.

THE VORTEX RIPPLES

Whatever is the initial state of the interface (flat, with
indentations, deformed at a large scale), the final state of a
fluid-granular interface under an oscillating flow (with grain
motion and without fluidization) is a vortex ripple state.

The elasticity of vortex ripples

We have encountered a major difficulty in determining the
final wavelength of the vortex ripples. A review of the cor-
relations proposed in the literature can be found in [8]: the
final wavelength is proportional to the amplitude of oscilla-
tion A and is independent of both the grain’s diameter d and
the frequency f. The diameter changes only the forcing nec-
essary to put the grains into motion. To simplify, if the grain
size increases, one must increase the forcing (either A or f)
[3]. The frequency independence was noticed first by Bag-
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FIG. 5. A series of images describing the coalescence by a trans-
lation mode of two rolling-grain ripples (the time interval is 20 s

between each picture for the parameters f=1 Hz, A=1.5 cm, and
d=110 pum). New setup.
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FIG. 6. (Color online) Ripple wavelength for two grain sizes
(250 and 325 wm) as a function of time (linear-log scale). Old
setup. Parameters are f=1 Hz, A=2.45 cm.

nold. We have shown that the frequency changes both the
height and the shape of the final vortex ripples in our previ-
ous work on segregation [7].

In this work, where the parameters were varied in a large
extent, we noticed several deviations from the so-called 4/3
law [2] and we attribute these discrepancies to the elasticity
of the system of vortex ripples, a term introduced by Bag-
nold in his 1946 paper. Let us illustrate this point [1]. In Fig.
6, we display two typical evolutions of the mean wavelength
of the ripples (see in addition [3]). For the following discus-
sion, we will focus on the evolution associated with the grain
size d=250 um. If one had stopped the measurements at
4000 oscillations because the ripple wavelength was not
evolving any more since 1000 oscillations, one would have
made an error of 20% on the final wavelength measured at
100 000 oscillations. The difficulty is that the experimenter
has the (wrong) impression that the system of ripples is sta-
bilized. We notice that the wavelength jumps by quanta as a
single ripple “disappears” at each coalescence.

It seems that this evolution through several plateaus is the
illustration of the elasticity described by Bagnold. Indeed, at
the moment of the transition from the rolling-grain ripples to
the vortex ripples, several rolling-grain ripples become at the
same time vortex ripples. Hence, the number of nucleation
spots is important and so is the number of systems of vortex
ripples which will compete in order to invade the whole
setup extent. Each system tries to occupy the largest place
and is in competition with the other systems. We have ob-
served that the whole system blocks itself in a kind of meta-
stable state for which it had not reached the final wavelength,
as it would have done if it had started from a single site of
nucleation. The mean wavelength does not change but the
profile of the ripples can vary. Sometimes, we even observe
an accordion shape of the envelope of the ripples’ height.
This behavior is similar to the so-called Eckhaus instability
of one-dimensional patterns by successive compressions and
dilatations of the system of ripples until one or several
ripples is (are) annihilated [9].
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FIG. 7. (Color online) Ripple wavelength for two frequencies
(0.7 and 1 Hz) as a function of time (linear-log scales). Old setup.
Parameters are A=2.45 cm, d=110 um.

Contrary to Bagnold who used a deep mark in the sand as
a unique site of nucleation for a system of vortex ripples [1],
our present experiments often feature these plateaus in the
evolution as we started from a flat bed in order to study the
evolution of the rolling-grain ripples. Hence, the error due to
the elasticity can explain some discrepancies in the literature
about the large number of correlations for the final wave-
length of the vortex ripples. So, it is necessary to specify the
initial state of the interface (flat or not) [10]. In addition, our
setup has periodic boundary conditions because we use a
cylindrical geometry and this can also explain such an evo-
lution by recalling that other boundary conditions exist de-
pending on the geometry [10-15].

The influence of the frequency of oscillation on the final
wavelength of vortex ripples

Bagnold seems to have been the first to point out the
independence of the final wavelength of the vortex ripples
with the oscillation frequency [1]. We display such a behav-
ior on Fig. 7 for two different frequencies. In addition, we
provide an experimental demonstration that the evolution
and more precisely the shape of the curve depend on the
frequency. We will come back to the influence of frequency
during the coarsening of the rolling-grain ripples.

Moreover, as noticed already by Bagnold, we do observe
an increase of the wavelength that is the formation of typi-
cally one additional ripple when the frequency is such that
one is close to the threshold value for fluidization. In our
previous study dealing with the influence of segregation in a
binary mixture, we have already noticed the presence of an
additional ripple as can be seen in Fig. 6(f) of our paper [7].
This new ripple can disappear and appear again as the final
state is a dynamical one. That is why Bagnold described it as
an “oil bump” undulating horizontally [1].

THE PSEUDOSTABILITY ZONE OF ROLLING-GRAIN
RIPPLES

Scherer et al. [16] as well as Stegner and Wesfreid [2]
have shown that rolling-grain ripples are transient patterns
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FIG. 8. (Color online) Ripple wavelength for several grain sizes
(65,120,160, 190,250, and 325 um) as a function of time (linear-log
scales). Old setup. Parameters are f=1 Hz, A=2.45 cm.

which do evolve always toward a stable vortex ripple state.
However, several authors like Bagnold [1], Sleath [17], and
Blondeaux [18] have reported the observation of stable
rolling-grain ripples. Chan et al. even observed only rolling-
grain ripples and not vortex ripples for very viscous liquids
[19]. In our previous work [3], we have shown that rolling-
grain ripples could evolve on a very long time scale if, for
fixed frequency and grain diameter, one diminishes the am-
plitude of oscillation in order to get close to the threshold for
motion. Hence, in this study we will confirm such a behavior
if, for fixed amplitude and grain diameter, we decrease the
frequency or if, for fixed amplitude and frequency, we in-
crease the grain diameter. The major result is that the dura-
tion of the coarsening in the rolling-grain ripples state is
longer if one is near the threshold for motion as discussed in
our former paper on the subject [3] by evaluating the so-
called Schields number (see below for a definition). We have
called the coarsening phase “the pseudostability zone” of
rolling-grain ripples despite the fact that they always evolve
toward vortex ripples.

The influence of the grain size on the pseudostability zone

In order to bound the pseudostability zone of rolling-grain
ripples, we first fix the amplitude of oscillation (A
=2.45 cm) and the frequency (f=1 Hz) for several grain
sizes d=65,120,160,190,250, and 325 um. The case of
65 um needs a special discussion. On Fig. 8, the behavior of
the ripples’ wavelength is very similar for the sizes d=120,
160, and 190 um between 60 and 600 oscillations. The ini-
tial wavelengths are close together with a tendency toward
an increase with the grain size. The transition toward vortex
ripples happens around 250 oscillations for these three sizes.
Above 600 oscillations, we notice that, the smaller the size
is, the longer the wavelength stays on successive plateaus for
a certain time. For example, the wavelength goes from 3.3 to
3.5 and then to 3.8 cm: for d=120 um, the jump toward the
first plateau happens around 20 000 oscillations, whereas it
happens around 800 oscillations for d=190 um, and so on.
We follow this tendency for the two bigger sizes d=250 and
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325 pm: the more the size increases, the less time the system
spends in the intermediate plateaus. As an example, for d
=325 um, the system goes directly to the plateau with wave-
length equal to 3.8 cm. In addition, the initial wavelength
increases a lot for these big sizes and it is all the more dif-
ficult to observe the initial structures as we are able to detect
them only after a while. This critical slowing down is remi-
niscent of the thermodynamic transitions in statistical phys-
ics.

However, we notice that the increase of size lengthens the
typical time of transition #; toward the vortex ripples state:
t7f=500 oscillations for d=250 um and #;f=4500 oscilla-
tions for d=325 um. Hence, the bigger the grain size, the
longer the pseudostability zone, and the less the vortex
ripples go through several intermediate plateaus. As dis-
cussed in our previous work, it is easy to understand that the
increase of grain size pushes the system close to the thresh-
old for motion described by the so-called Shields number
which is defined by the ratio between the shear stress im-
pressed by the fluid and the reduced weight of the grains
(®=1/d) [3,19]. For the smaller grain sizes d=120, 160,
and 190 wm, the grain transport by the flow is so strong that
the system evolves very rapidly toward the vortex ripple
state as we are not able to distinguish any difference in the
corresponding evolutions.

As discussed previously, the plateaus are the outcome of
the ripple elasticity, that is, of the difficulty in annihilating
additional ripples because of the competition between sev-
eral ripple systems issuing from different nucleation sites.

Bagnold reported also that the presence of a unique nucle-
ation site avoids the blocking of the wavelength evolution.
Indeed, the smaller the grains, the shorter the initial wave-
length, and hence the bigger the number of initial ripples is.
By evolving, these ripples become nucleation sites for vortex
ripples. As a consequence, if we increase the grain size, the
number of ripples decreases and so does the number of nu-
clei, that is, the probability to block the ripple system in an
intermediate plateau. Moreover, for the big sizes, the grain
transport slows down as one approaches the motion thresh-
old. However, if one rolling-grain ripple becomes a vortex
ripple before the others, the transport associated with the
newly formed vortex ripple will be larger. Hence, the system
of vortex ripples created by this initial nucleus will invade
faster the remaining rolling-grain ripples which do evolve on
a longer time scale toward the vortex ripple state at the same
time. So the probability of appearance of new systems of
vortex ripples which would enter into competition with the
first one diminishes.

Now, these conclusions seem doubtful if one considers the
smaller size (d=65 um). Indeed, despite the fact that the
corresponding initial wavelength is small and of the same
order for d=120 um, the transition toward the vortex ripples
happens at a time similar to the one associated with the size
d=250 um. We think that this behavior is the consequence
of the cohesive character of the grains which appears for
sizes smaller than 100 um for glass beads. For this type of
grain, the Shields number (®=1/d) does not take into ac-
count the interparticular cohesion and is no longer a good
control parameter [3,20]. Hence, cohesive grains behave as
bigger grains. If so, one gets closer to the threshold for mo-
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FIG. 9. (Color online) Ripple wavelength for several frequen-
cies (0.425,0.475,0.525,0.55, and 0.6 Hz) as a function of time for
noncohesive grains (linear-log scale). Old setup. Parameters are A
=5.75 cm, d=200 pm.

tion. That is why grains with size 120 wm are smaller in
some sense than those with d=65 um because of the cohe-
sion effect.

Finally, we found, as did Bagnold, that the interface be-
tween two crests is flat for sizes up to d=190 um; then it
becomes an arc of a circle for bigger sizes.

The influence of oscillation frequency
on the pseudostability zone

As usual now, we notice the presence of several interme-
diate plateaus during the vortex ripple regime on Fig. 9 (d
=200 um). Hence, as discussed previously, the measured
“final” wavelength of vortex ripples depends in fact on the
patience of the experimenter. But here we are not interested
in the final wavelength but in the evolution from rolling-
grain ripples toward vortex ripples. In addition, we have
shown previously the independence of the final wavelength
on the frequency if one waits sufficiently.

Now, if we decrease the frequency, the coalescence of
rolling-grain ripples is longer as one gets close to the thresh-
old for motion (crosses at 45° on Fig. 9). The duration of the
coarsening lasts from a few seconds to several days depend-
ing on the frequency. This last fact explains how several
workers on the subject were misled and thought that rolling-
grain ripples could be stable patterns.

For the higher frequency (upward triangles on Fig. 9), one
switches very rapidly from a flat bed to a vortex ripple re-
gime and the rolling-grain ripples are almost unobservable.
We can understand now why some other workers claimed
that they did not observe rolling-grain ripples.

The major result here is that the wavelength of transition
between rolling-grain ripples and vortex ripples is indepen-
dent of the frequency, contrary to our previous study where
we show that it does increase with the amplitude of oscilla-
tions [3] and the grain size (present study).

The behavior of the root mean square value of the ripple
height around the interface is similar to the one of the wave-
length (we suppressed the mean height of the interface,
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FIG. 10. (Color online) Root mean square value of the ripple
height for several frequencies (0.425,0.475,0.525,0.55, and
0.6 Hz) as a function of time for noncohesive grains (linear-log
scale). Old setup. Parameters are A=5.75 cm, d=200 pum.

which can vary because of different initial conditions [3]).
We notice that the transition from rolling-grain ripples to
vortex ripples happens for a fixed value around 0.25 mm
whatever is the frequency (Fig. 10). The same value is valid
for any grain size and amplitude (we do not report the plots
here) so can be considered as a universal value for the tran-
sition of an interface.

Finally, we did observe (with a fast CCD camera), as did
Bagnold, the fact that the path of the grains increases with
the frequency (and the amplitude [3]). It seems that rolling is
really a feature of rolling-grain ripples. Indeed, when the
frequency is high rolling is replaced by lifting and one goes
directly from a flat bed to the vortex ripple state, bypassing
the rolling-grain ripple state. Contrary to what was asserted
by Bagnold, we do observe motion within the ripple troughs
by image subtraction, but it is less active than above the
crests.

The influence of grain cohesion on the pseudostability zone

We have seen that the time scale for the transition was
modified by interparticular cohesion. This cohesion is of
physical and not chemical origin and certainly due to van der
Waals forces between the glass beads immersed in distilled
water. However, a detailed study should be done on this lat-
ter point.

We decided to check if the global behavior for the smaller
size (d=65 um) was different from the others. We did not
find any discrepancies in the evolution for either the wave-
length (Fig. 11) and the root mean square value of the ripple
height (Fig. 12).

As a partial conclusion, cohesion does not affect the glo-
bal ripple evolution but modifies the time scale by slowing
down the coalescence. Future studies should concentrate on
the influence of additional phenomena like chemical cohe-
sion encountered at the beach due to the seawater properties.

CONCLUSIONS AND PERSPECTIVES

We hope that our study has clarified the physical distinc-
tion between rolling-grain ripples and vortex ripples. We
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FIG. 11. (Color online) Ripple wavelength for several ampli-
tudes (0.91,1.22,1.84, and 2.45 cm) as a function of time for co-
hesive grains (linear-log scale). Old setup. Parameters are f=1 Hz,
d=65 pm.

have looked for the influence of the frequency of oscillation,
the grain diameter, and the interparticle cohesion. We have
confirmed our previous findings concerning the fact that the
rolling-grain ripples can be observed provided that the
threshold of grain motion is within the range of parameters
used in the experiment. Otherwise, if one is far from it, only
vortex ripples are present. Additional works are nonetheless
needed to sharpen the picture presented here. In particular, to
what extent is the mode of grain transport (rolling or lifting)
important? What is the influence of the grain density as well
as the fluid viscosity? Is the true distinction between both
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FIG. 12. (Color online) Root mean square value of the ripple
height for several amplitudes (0.91,1.22,1.84, and 2.45 cm) as a
function of time for cohesive grains (linear-log scale). Old setup.
Parameters are f=1 Hz, d=65 pum.

types of ripples of hydrodynamical or granular origin? Our
present experimental setup should allow in the near future a
dynamical study of sand ripples and especially of the close
coupling between the fluid flow and the grain motion.
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