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The classical theory of space-time, namely general relativity, suggests but does not demonstrate the
existence of so-called wormholes allowing for interstellar journeys. Alternative proposals such as quantum
gravity theories are developed nowadays to allow for wormhole travels by assuming hypothetical trans-
Planckian effects at tiny scales. Here we show experimentally that analogue traversable and bidirectional
wormholes exist in hydrodynamics following a suggestion by Wheeler. Using a water channel, we sent free
surface waves on a countercurrent in an analogue gravity setup aiming at showing that hydrodynamic
wormhole travels are controlled by a cascade of dispersive scales including surface tension effects: the
capillary wavelength plays the role of a Planckian scale below which long gravity waves are transformed
into short capillary waves that are able to move at speeds higher than the “flow” of space-time. Whereas our
results do not apply to putative astrophysical wormholes per se, we anticipate that they will trigger new
ideas to explore quantum gravity physics.
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I. INTRODUCTION

The point singularity at the heart of models of black
holes like the 1916 Schwarzschild-Droste solution of
Einstein’s theory of general relativity leads to the failure
of providing a complete history for the geodesics of
massless and massive particles encountering the singularity
[1,2]. In 1935, Einstein and Rosen tried to link two external
solutions à la Schwarzschild by “a bridge” whose interior
solution was geodesically incomplete [3]. In 1959,
Fronsdal and separately Kruskal in 1960 designed an
analytic extension of the Schwarzschild solution by cou-
pling a black hole with its time-reversed solution (a white
hole spewing rather than swallowing matter, a solution
discovered by Flamm in 1916 [4]) forming a so-called
“wormhole” [5,6] (a term coined by Wheeler in 1957 for a
tunnel-like shortcut through space-time [7–10]) which
closed too rapidly for light to travel inside. In 1973,
Ellis found a way to force the Schwarzschild singularity
to stay open by replacing it by a “drain hole” with a vector
field on the associated space-time which can be interpreted
as a velocity field for an “aether” draining through the hole
[11]. In order to achieve this “plumbing” device, Ellis
coupled Einstein’s vacuum field equations with a scalar
field in order to open the point singularity. As Ellis
imagined, the aether “is more than a mere inert medium
for the propagation of electromagnetic waves; it is a
restless, flowing continuum whose internal, relative
motions manifest themselves to us as gravity. Mass
particles appear as sinks or sources of this flowing ether.”
Ellis introduced a drain hole line element with a coordinate
three speed [11]. During the 1970s and independently,

White [12], Anderson and Spiegel [13] and Unruh [14]
developed the so-called “rimfall” analogy between the
propagation of light in a curved space-time and the way
waves propagate on a moving medium [15–18]. For
example, White derived the “acoustic” metric in 1971 with
a velocity of the moving medium akin to Ellis’ aether flow.
In 1975, Anderson and Spiegel thought that waves propa-
gating in a moving medium could be kinematically trapped,
paving the way to the seminal paper of Unruh in 1981
where he envisaged the possibility to observe in laboratory
experiments the Hawking radiation emanating from an
analogue black hole horizon, namely the kinematical
amplification of quantum vacuum fluctuations by the tidal
forces mimicked by the flow gradient at the analogue
horizon [19]. Unruh’s analogy when applied to condensed
matter systems solves two difficulties with Hawking’s
prediction: firstly, the outgoing radiation appears to origi-
nate from arbitrarily short wavelengths in the vicinity of the
horizon; secondly, the corresponding energy of the fluc-
tuations goes to infinity transforming the horizon into a
caustic. The so-called trans-Planckian problem related to
the wavelength was tackled by Jacobson in 1991 who
suggested that dispersion would avoid the infinite blue-
shifting to the detriment of Lorenz invariance of the theory
[20–22]: analogue condensed matter systems are naturally
dispersive and/or dissipative at small scales. Hence, they
make perfect systems in order to test the Hawking
prediction and its robustness even in the presence of
dispersion: analogue gravity was born [15–18]. The notion
of an event horizon is extended by the notion of a dispersive
group velocity horizon or turning point which can be
computed from extrema of the dispersion relation.
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Quite separately, theories of quantum gravity like rain-
bow gravity were developed allowing Lorentz symmetry
breaking (see a modern discussion in [23]) following
another suggestion of Wheeler known as the “quantum
foam” [7–10]. Indeed, during the 1960s, he considered
wormholes as ultramicroscopic objects (Planck-scale sized)
forming a quantum foam connecting separate regions of
space-time. He compared the situation to the free surface of
ocean which looks flat from an airplane view but who
becomes choppy when approaching the surface. The wave
turbulence properties of space-time would be controlled by
Planckian units that Wheeler was again the first to discuss
in an astrophysical context [7–10]. Taking seriously the
paradigms of modified gravity like rainbow gravity [23] or
analogue gravity [15–18], it turns out that dispersive effects
at the Planck scale may control the physics of wormhole
travel. According to Wheeler [8], “obviously there is no
reason to expect any direct analogy between collective
disturbances in the Einstein-Maxwell field and those that
take place in a crystal lattice. Let it nevertheless be insisted
that one shall leave no stone unturned in searching for
special phenomena associated with the propagation of
energy through space… Disturbances of very short wave-
length will feel out the microcurvature of space and will not
propagate normally. The same will be true of disturbances
of very long wavelength, comparable to the radius of the
Universe. Consequently a disturbance that is originally
localized will be dispersed. However, if the dispersion
curve possesses a point of inflection, then disturbances
made out of wavelengths near the point of inflection will
keep together for a long time in the linear approximation.”
Recently, Hawking claimed that the strict notion of an

“event horizon”was incompatible with quantummechanics
since according to him “there is no escape from a black hole
in classical theory, but quantum theory enables energy
and information to escape” [24]. Wheeler’s guess and
Hawking’s conjecture (“there are no black holes”) are
supported by analogue gravity. Indeed, high- and low-
energy behavior in a condensed matter system display
departures from the linear dispersion relation. For example,
a Bose-Einstein condensate features a superluminal cor-
rection in the Bogoliubov dispersion relation whereas water
waves can display either subluminal, superluminal or
inflectional behavior à la Wheeler depending on the
physical parameters [18]. These corrections to the linear
dispersion relation are controlled by the inclusion of
microscopic dispersive scales in the system reminiscent
of the Planck scale: the healing length in a Bose-Einstein
condensate, the water depth or the capillary wavelength in
water waves. Hence, one concludes that there are no
analogue black holes because of dispersion in condensed
matter systems. Hawking suggested the possibility of a so-
called “apparent horizon” in addition to the event horizon;
the former is a frontier region where the light rays would be
suspended when trying to escape from the black hole [24].

In this work, we use water waves for a condensed matter
system amenable to experiments as described in [25–38]. In
the long-wavelength limit, both systems in general rela-
tivity and condensed matter physics are described by the
following effective metric: ds2 ¼ c2dt2 − ðdx −UdtÞ2. For
surface waves, they propagate in the same way as a
massless scalar field [25]. When the analogy is broken
(by “entering the white hole” and “escaping from the black
hole”), it is principally through the short-wavelength
dispersive effects [25–37] which already breaks the exact-
ness of the mapping to an effective metric [21,22]. The
effective 1þ 1 dimensional metric is expressed in terms of
both flow velocity UðxÞ and wave speed cðxÞ profiles that
can both be tuned experimentally. One recalls that in
general relativity, c is constant whereas it is often space
dependent in condensed matter setups. In our experiment,
both profiles are given by the geometry of the obstacle used
to change the water depth. It is also of course important that
this metric is only correct in the dispersionless case,
whereas our experiment relies on dispersion.
The inflectional behavior of the water wave dispersion

relation will allow us to prove experimentally, after our
theoretical and numerical predictions, that analogue worm-
hole travels in hydraulic settings are controlled by a cascade
of dispersive effects, one of which, the one associated to the
capillary length, could be an analogue candidate for a
quantum gravity behavior. To the best of our knowledge,
this is the first experiment in the field of analogue gravity to
demonstrate the existence of an analogue wormhole travel
following our theoretical and numerical predictions [36].
Sabin has discussed recently another proposal in the context
of a dc-SQUID array [39]. We will base ourselves on the
concept of a Wheeler wormhole, a wormhole featuring
dispersive horizons (analogous to the event and apparent
horizons à laHawking) whose bidirectionality is controlled
by microphysical effects. In astrophysics, microphysical
effects would correspond to trans-Planckian physics and
possibly quantum gravity regimes. In hydrodynamics,
microphysical effects correspond to surface tension physics.
Other types of wormholes without a horizon like theMorris-
Thorne wormhole have been proposed in the literature
[40–45]. We will show the existence of an analogue
Morris-Thornewormhole as well by playing on the physical
parameters of our experiments: hence, traversability is not
necessarily a synonym of the absence of horizon. This latter
kind of wormhole requires in general relativity the inclusion
of either a so-called exotic matter with a nonstandard stress-
energy tensor, “phantom energy” or “scalar field” and so on,
to stabilize them [5,6]: it is outside the scope of the present
paper to understand why, in hydrodynamics, the analogue
wormholes are stable. One can simply argue that Navier-
Stokes equations are different from Einstein’s equations and
that stability of the hydraulic wormhole is possibly linked
to the fluid dynamics. Constraints on the energy to keep open
the wormhole by a “repulsive” gravity [6,45] are certainly
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violated at small scales in analogue systems. Besides, the
velocity profiles in hydrodynamics do not necessarily have a
“central” singularity like in general relativity: for example,
the Schwarzschild-Droste solution in Painlevé-Gullstrand
coordinates VðrÞ ¼ −c

ffiffiffiffiffiffiffiffiffi
rS=r

p
(where rs ¼ 2GM=c2 is the

Schwarzschild radius) is equivalent to a radial flow which
is singular at r ¼ 0 [1,2]. The longitudinal speed profile
UðxÞ used in our experiments is regular in the wormhole
region defined as the region between a pair of black and
white hole horizons. Moreover, our experimental disper-
sive horizons are eternal since the flow is “pumped”
continuously and there is no evaporation of the black or
white holes on the time scale of the experiments. Time-
dependent flow behavior is outside the scope of the present
paper since it will certainly involve the underlying dynam-
ics. As explained in Peloquin et al. [36], the direct travel
from the black to thewhite horizon is rather without interest
when the flow gradients dU=dx are small: a redshifting of
the gravity wave entering the black horizon takes place and
so does a blueshifting when getting outside from the white
horizon since thewave is propagating in the same direction
as the flow current. Here, wewill focus on the reverse travel
from the white horizon to the black horizon since it will
display the effect of small-scale physics controlled by
surface tension. The flow speeds are sufficiently small to
avoid the appearance of negative energy waves akin to
antiparticles. For the same reason, we will not look at a
black hole laser effect since it is beyond themain objectives
of this paper (see [36] for some numerical simulations).
Negative energies are oftenmentioned to cause light rays to
defocus at the throat of the wormhole like in the original
proposal by Thorne et al. [40,41]: the defocusing is
controlled by the underlying dynamics in our work.

II. EXPERIMENTAL SETUP, METROLOGY
AND PARAMETER CHOICES

Our experiments were performed in the water channel of
the Pprime Institute in Poitiers (see Fig. 1) and were
inspired by the previous works [26–29,31–38].
The dimensions of the channel are length × width ×

height ¼ 6.5m × 0.39m× 0.6 m (Fig. 1). A PCMMoineau
pump regulated by a variable frequency drive can reach a
maximum flow rate of 65 Ls−1.
The spatially varying background was set up by an

obstacle whose geometry hBðxÞ is the same as in the
Vancouver experiments [29] which is 1.55 m long and
0.106 m high (Fig. 1). The volumetric flow rate is adjusted
by a pump at Q ¼ 8.13 Ls−1 and the asymptotic water
depth h0 is set at 205 mm to get velocities U of the free
surface in the range between 0.102 and 0.203 ms−1 due to
the presence of the bottom obstruction (the Froude number
varying between 0.07 and 0.20).
As explained in [28], the maximum velocitymust be in the

range ½Uc ¼ −0.178…Uγ ¼ −0.23� ms−1 in order not to

have extra features well known in analogue gravity such as
the appearance of a stationary undulation or negative energy
waves with a corresponding black hole laser effect [36].
Figure 2 represents the phase diagram ðU; TÞ indicating
where the blocking velocities jUj at which the white
(“event”), blue (“apparent”) and negative horizons occur,
as a functionof thewaveperiodT (theprocedure to obtain this
phase diagram is explained in [28]). The incident period TI
must be less than 2π=ωmin, to be blocked at thewhite horizon
(the evolution of the frequency ωmin defined in Fig. 2 as a
function of the Froude number and the water depth was
studied in [34]) and superior to Tc in order to observe a

FIG. 1. Scheme of the experimental setup with the water
channel with dark green fluorescein, the blue laser sheet with
its light green signature on the free surface and the three
measurement side cameras.

FIG. 2. Phase diagram ðU; TÞ. The black, blue and red
curves correspond to, respectively, the white, blue and negative
horizons. The gray region indicates the velocity range. The
horizontal dashed lines correspond to the critical velocity Uc ¼
−0.178 ms−1 (where the white and blue horizons merge) and
Uγ ¼ −0.23 ms−1 the minimum velocity for the appearance of a
stationary undulation. The vertical point-dashed lines indicate the
critical period Tc and the maximum period for the blocking
2π=ωmin. The vertical continuous line represents the incident
period TI .
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double-bouncing behavior [28]: ðTc; UcÞ is the critical point
where the white (event) and blue (apparent) horizons merge.
So, the period of the incidentwave is fixed atTc ¼ 0.425 s <
TI ¼ 0.443 s < 2π=ωmin ¼ 0.504 s (the related angular fre-
quency satisfying ωc¼14.78Hz>ωI¼14.17Hz>ωmin¼
12.47Hz).
Thanks to a newly designed wave maker placed at the

end of the channel, we create a sinusoidal wave with a very
small initial amplitude at the position of the wave maker in
order to stay in the linear regime during all the mode
conversions. The actual mechanical amplitude of the
sinusoidal wave-maker displacement is am ¼ 200 μm
and the resulting amplitude of the incoming sinusoidal
water wave is a0 ¼ 11.53 μm for the incident wave
generated in our experiments (see the discussion below
for the choice of this amplitude).
Tomeasure the free surface deformations δhðωI; x; tÞ for a

fixed angular frequency ωI as a function of position along
the channel x and time t induced by the (reverse) wormhole
travel with a good precision, we use several cameras with a
total field of vision of roughly 1.1 m wide and a spatial
resolution of 0.219 mm per pixel (see Fig. 1). The free
surface is probed by a laser-induced fluorescence scanning
technique similar to the one discussed in [29,37]. We use a
laser diode (MBL-III-473 from Changchun New Industries)
with a POWELL lens (N − SF6; 75°) to generate a vertical
laser sheet impacting the free surface of water in the center
of the water channel [37]. Imaging of the fluorescent line
delineating the free surface was done with three cameras
(Grasshopper 3 CGS3.U3.41C6M from Pointgrey,
2048 × 2048 pixels with a maximum of 90 frames per
second, Nikon objectives 35 mm) and we record movies
made of 131072 (217) images at a rate of 18.02 Hz. A
subpixel free surface detection method similar to the one
used in [29] allows us to measure waves with amplitudes
smaller than 0.1 μm. It is based on laser-induced fluores-
cence using fluoresceine mixed with water: free surface
deformations are visualized by the fluorescent emission of a
laser sheet impacting the water surface and exciting the dye.
We capture the free surface deformations during 2 hours
corresponding to a number of images in powers of 2, namely
217 for an accurate Fourier transform, the acquisition
frequency being chosen to have an exact number of periods.

III. EXPERIMENTAL SPACE-TIME DIAGRAMS

In 1977, Basovich and Talanov studied carefully the
kinematics of gravity-capillary waves and their transfor-
mations on inhomogeneous currents [46] (see the simulta-
neous theoretical work by Smith in [47]). They looked
to the conditions of reflections of wave packets by a
countercurrent. A gravity wave opposed to the current
was predicted to be shortened (blueshifted using an optical
terminology) and blocked when the group velocity cancels
at a first turning point known as the wave blocking
point (the analogue of a white hole horizon). Then, the

incoming wave is reflected by mode converting into
another gravity wave with a shorter wavelength (the so-
called blueshifted wave). The latter has positive phase
velocity but negative group velocity. Hence, while drifting
backward in terms of energy the blueshifted wave shortens.
Up to now, this process is controlled by the water depth and
the frequency of the incoming waves but does not depend
on the surface tension of the fluid. When including the
effect of capillarity, the blueshifted waves can be blocked at
a second turning point and then mode converted into
capillary waves with positive phase and group velocity
propagating opposite to the current on the “back” of both
the incoming and blueshifted waves. When reaching the
first turning point the capillary waves are not blocked
contrary to the incident gravity waves. Wavelength short-
ening and double reflection of gravity-capillary waves on
an inhomogeneous current were observed experimentally
in the works of Pokazeev and Rozenberg [48] and Badulin,
Pokazeev and Rozenberg [49] in 1983. An obstacle was
placed on the bottom of the water channel to vary the flow
and the associated speed range was between 0.04 and
0.3 m · s−1 (speed between 0.04 and 0.21 m · s−1 over a
sloping bottom in [48] and speeds up to 0.3 m · s−1 over a
bump obstacle in [49]). The central frequencies of incom-
ing wave packets propagating on the countercurrent were in
the range of 1.5–11 Hz with three to ten oscillations within
the envelope of the packets (in the range of 2–11 Hz for
[48] and in the range 1.5–3 Hz for [49]). A huge decrease of
the wavelength was observed e.g. from 20 cm down to
2 mm. The distance between both reflection points was
typically of the order of one local wavelength. The trans-
mitted capillary waves were highly dissipated by viscosity
on the top of the obstacle in the fastest region of the flow
speed and were not seen to reach the other side of the
obstacle. It is unclear whether the waves in Badulin,
Pokazeev and Rozenberg experiments were damped or if
the resolution of the sensors used to measure the wave
amplitude was not sufficient small to detect a (reverse)
wormhole travel, namely the transmission of gravity waves
after their dual mode conversion into capillary waves when
propagating above the obstacle [49]. Theoretical and
numerical works were subsequently done by Trulsen and
Mei in 1993 [50] who added the effect of viscosity which
damps the capillary waves during the double bouncing
conversion without being able to make quantitative com-
parisons between theory and experiments because of a lack
of data: we intend to fill this gap in this paper.
In the linear regime where the frequency is conserved,

the ray trajectories are described by the ray theory
using Hamilton equations dk=dt ¼ −∂ω=∂x ¼ −kdU=dx,
dx=dt ¼ ∂ω=∂k ¼ vgðωðkÞ; UðxÞÞ in the geometrical
optics approximation, where vg is the group velocity namely
the derivative of the dispersion relation including the water
current [28,51]. Following Farrell and Watterson [51], since
the total group velocity vg ¼ U þ Cg ¼ ∂ω=∂k vanishes at
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the blocking points, both dk=dx ¼ ð−k∂U=∂xÞ=vg (where
Cg is the wave group velocity) and the wave amplitude
become infinite and the ray theory breaks down (we recall
that the energy of gravity waves scales as the square of the
amplitude [52]): in theAppendices,wediscuss the prediction
of the ray theory as well as the wave theory which smoothes
the related divergence to predict the wave envelope.
We plot in Fig. 3 one theoretical ray trajectory in the

corresponding space-time diagram where twice the double-
bouncing behavior is observed to occur in each white and
black hole regions in the (reverse) wormhole travel. As
recalled for the Badulin, Pokazeev and Rozenberg experi-
ments [49], the incoming wave I is reflected in a blue-
shifted wave B at the white hole horizon. Then, the
blueshifted wave B is reflected at the blue horizon and
converted into a capillary wave C which enters into the
wormhole region in between the white and black horizon.
Contrary to the experiments of Badulin, Pokazeev and
Rozenberg [49], the capillary wave C which is damped by
viscosity is seen to reach the red horizon where it is
converted into a longer gravity wave (the redshifted wave R
dual to the Bwave) and is converted back to an even longer
gravity wave T at the black horizon where it is transmitted
on the other side of the obstacle.

We applied a filter around the sent frequency to clean the
noise and visualize only the wave generated by the wave
maker and its converted modes at the same frequency (see
the space-time diagram of Fig. 4 and the rescaled water
depth variations at a given time in Fig. 5). We clearly see
the conversion—incident gravity wave I to capillary wave
C and capillary waveC to transmitted gravity wave T (from
the right to the left)—as well as the interference zones
generated by the exponential tail of the Airy pattern [27]
(itself due to the interference between the I and B modes)
with the capillary waves in both the white and black hole

FIG. 3. Bottom: The window studied in the experiments over
the obstacle. Top: Scheme of the four different conversions; the
red curves represent the theoretical ray trajectories (continuous
line, reverse travel from the white horizon to the black one;
dashed line, direct travel from the black horizon to the white one)
and the vertical black dashed lines correspond to the boundaries
of the former window.

FIG. 4. Experimental space-time diagrams filtered at the
frequency of the incoming wave I (the width of the observation
window is roughly 1.1 m and the duration is 7 s). The color scales
represent the amplitude in micrometers where we have been
forced to adapt the range in three relevant zones for visualization
purposes because of the huge viscous damping of the wave
amplitudes.

FIG. 5. The black curves show the free surface fluctuations
δhðωI ; xÞ filtered at the frequency ωI ¼ 14.17 Hz of the incom-
ing wave I at a fixed time, the blue dashed curves is the
experimental envelope and the theoretical red one in the central
window represents the exponential damping by viscosity in the
capillary regime within the wormhole.

CLASSICAL ANALOGUE OF AN INTERSTELLAR TRAVEL … PHYSICAL REVIEW D 96, 064042 (2017)

064042-5



regions (around x ¼ −0.25 m and x ¼ 0.2 m, respectively)
in Fig. 4. These interference patterns are computed theo-
retically in the Appendices and fit quite well with the
interface extraction data.
The enormous damping [53] of the capillary wave C

within the wormhole tunnel (see the red curve in the central
graphic of Fig. 5) due to the viscous process in the bulk is
modeled by the following spatial evolution for its ampli-
tude ac: acðxÞ ¼ a0ceð−ðx−x0Þ=LdÞ with a0c ¼ 3 μm the
experimentally measured amplitude at x0 ¼ 0 m on the
top of the obstacle (see Fig. 3). The procedure used to
remove the exponential damping due to the dissipation is
discussed in the Appendices. The related dissipative length
inferred from the measurements Ld ¼ 0.125 m is shorter
than the interhorizon distance Lwormhole (black and white)
which is close to 0.5m≃ 4Ld: the viscous dissipation takes
place but is not sufficient to kill completely the waves in the
wormhole tunnel since the extraction method of the water
fluctuations is still able to detect them [54]. Even though
Ld < Lwormhole, still Lwormhole=Ld is not yet large enough
for the outgoing waves to be beyond the sensitivity of the
measuring apparatus.

IV. LINEARITY AND ABSENCE OF HARMONIC
GENERATION AND WAVE BREAKING

We plot in Fig. 6 the spatial spectrogram along the water
channel namely the evolution of the wave amplitude as a
function of the angular frequency and the longitudinal
position x, divided by the amplitude of the incident wave at
frequency ωI [37]. We observe that the frequency is
conserved with no harmonic generation (at twice the
frequency of the wave maker for example). Hence, there
is no generation of so-called free harmonics which are
solutions of the dispersion relation as can be checked in
Fig. 11 of Appendix A. In the same vein, we verified that
bounded harmonics à la Stokes such as ½2ω; 2k� (which are
not solutions of the dispersion relation) are not generated
either.
Because the dimensionless water depth kh is always

large enough (with a minimum of kh ¼ 6) to consider the
waves in the deep water regime, the only parameter seizing
the effect of the nonlinearity is the camber ka. As discussed
in any textbook on water waves, the threshold on the
camber ka for the appearance of bounded harmonics is

ðkaÞStokes ¼ 0.196 tanhðkhÞ≃ 0.196; kh ≫ 1: ð1Þ

The range of camber of finite-amplitude capillary waves is
not attained as well and we can safely assumed that the
experiment is within the linear infinitesimal amplitude
approximation (with an error less than 2.5%) without
any modification of the wave frequency by the viscosity
as discussed by Denner, Paré, and Zaleski [55]:

ðkaÞViscous ≃ 0.314: ð2Þ

Similarly, the camber of a typical wave breaking is not
reached either:

ðkaÞBreaking ¼ 0.446 tanhðkhÞ≃ 0.446; kh ≫ 1: ð3Þ

To obtain the camber we use two methods, the first one
by a detection of the crests and troughs providing access to
the wavelength and the amplitude as a function of the
spatial position x. For the second method, we consider the
maximum (in time) of the spatial derivative of the free
surface fluctuations. If we consider that these fluctuations
are due to a wave whose expression is

hðx; tÞ ¼ aðxÞ exp½iðkðxÞx − ωItþ ϕðx; tÞÞ� ð4Þ

from which we derive

∂h
∂x ≈ ka exp

�
i

�
kx − ωItþ ϕþ π

2

��

provided ∂k
∂x ≪ ka and ∂a

∂x ≪ ka (ray approximation), we get
an estimation of the camber:

max

����� ∂h∂x
����
�
≈ ka: ð5Þ

We plot in Fig. 7 the experimental value of the camber ka
using both methods. We show that the camber is always 6
times smaller than the threshold for the appearance of
bounded harmonics in particular.

FIG. 6. Spatial spectrogram δhðω; xÞ of the dimensionless
amplitude evolution relative to the incident wave δhðωI ; xÞ
showing that the incident frequency (ωI ¼ 14.17 Hz) is
conserved and the amplitude of the first harmonic frequency
(2ωI ¼ 28.34 Hz) is negligible. Higher harmonics are not
displayed since they are absent.

L.-P. EUVÉ and G. ROUSSEAUX PHYSICAL REVIEW D 96, 064042 (2017)

064042-6



V. PHASE SPACE

Badulin, Pokazeev and Rozenberg [49] looked to the
space evolution of the wavelength (phase space diagram) of
the incoming wave and the converted modes. They saw
clearly the double-bouncing behavior as their physical
parameters were designed to observe it. Here, as explained
in [54], we focus on the (reverse) wormhole travel rather
than the double bouncing; hence the optimal regime to
observe the travel is such that the distance between the
white and blue horizons is small and does not allow one to
display the double bouncing as clearly as in Badulin,
Pokazeev and Rozenberg work to which we refer the reader
[49]. On the contrary, we observe the conversion to the
capillary waves and the huge decreases in wavelength
in Fig. 8.
We add on the latter graphics, in addition to the obstacle

geometry and the local water depth, the two dispersive
scales controlling the blocking at the different horizons. As
we are mostly in the deep water approximation kh ≫ 1, the
water depth does not play a role in the conversions. For the
white and black horizons, the relevant scale is the wave-
length at blocking λ� ¼ ðcTÞ2=ð8πhÞ ¼ gT2=ð8πÞ (with
c ¼ ffiffiffiffiffi

gh
p

) as explained in [27]. When the wavelength
matches this dispersive scale (see Fig. 8), the flow velocity
is equal in modulus to the corresponding dispersive group
velocity Cg of the waves, namely Ug ¼ −c2T=ð8πhÞ ¼
−gT=ð8πÞ for the gravity regime [27] in the deep water
approximation. For the blue and red horizons, the dis-
persive scale is the order of magnitude of the capillary
length lc ¼

ffiffiffiffiffiffiffiffiffiffi
γg=ρ

p ð¼1.7 mm in waterÞ as discussed in
[28,32]: more precisely, it is the capillary wavelength
λc ¼ 2πlcð¼1.7 cm in waterÞ obtained by looking at the

minimum of the phase velocity as a function of the
wavelength which is controlling the undulatory properties
of the capillary waves regime. Within the wormhole (in
between the blue and red horizons), the theory discussed in
[28] allows one to derive the wavelength as a function of
the speed by canceling the gravity constant (g ¼ 0) in the
dispersion relation (a detailed derivation of the wave-
current interaction in the pure capillary case will be
reported elsewhere since it is lacking in the literature).
The dissipative length is of the order of a few wavelengths

FIG. 7. Experimental value of the camber ka as a function
of the spatial position using the extrema detection method (blue
circles) and the maximum derivative of the free surface fluctua-
tions method (red line). The horizontal dashed lines indicates the
threshold for the appearance of bounded harmonics ðkaÞStokes ≃
0.196 and the camber for the wave breaking ðkaÞBreaking ≃ 0.446
in deep water.

FIG. 8. (Top) Space evolution of the wavelength when reading
from right to left. The red line is the theoretical prediction. The
blue open dots are the experimental data. The dashed black line is
the theoretical dissipative length Ld. The dotted gray lines are the
theoretical scales h, λ� and λc ¼ 2πlc. (Bottom) Spatial evolu-
tions of the velocities of both the flow in blue and the waves in
red. In gray, the theoretical blocking velocity for the gravity
regime Ug and the threshold for the zero mode appearance Uγ

regime which is not reached by the experimental flow speed
UðxÞ.

FIG. 9. Direct penetration scenario: the black curves show the
free surface fluctuations δhðωM−T; xÞ filtered at the frequency
ωM−T ¼ 16.37 Hz of the incoming wave I at a fixed time; the
blue dashed curves is the experimental envelope.
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only in the wormhole tunnel, namely in the capillary
regime, whereas it is far bigger in the gravity regime
outside of the wormhole and is not represented in Fig. 8.

VI. MORRIS-THORNE WORMHOLE

For completeness and as discussed in [28,32], there is a
direct penetration (without double bouncing) with a con-
tinuous blueshifting for incoming waves for an incoming
period TM−T ¼ 0.383s < Tc ¼ 0.425s. This case may be
linked to the Morris-Thorne wormhole proposal in general
relativity since there is an absence of a horizon (white and
black). We confirm the qualitative visual observation of the
direct penetration first reported in our previous work [32]
by our new quantitative measurements within the linear
regime (see Fig. 9) .

VII. CONCLUSION

Can we come back from an interstellar travel after having
plunged into awormhole from the black hole side?Hydraulic
traps for thewater waves can be linked to hydraulic fountains
thanks a tunnel-like region. In hydrodynamics, water waves
which enter a black hydraulic horizon emerge from a white
hydraulic horizon and do not meet singularities in the flow
field (a fact well known for rotating black holes like the Kerr
solution which allows wormhole travel via a path that gets
around the ring singularities from one universe to another).
The travel back has been demonstrated in this work for a
hydraulic wormhole using water waves and for the first time
in any analogue gravity experiment. Does the singularity
exist in reality or is it smoothed by a regularizing process in
astrophysics? In nature, waterfalls may either plunge into a
body ofwater and the flow smoothly slows down, or crash on
stones which is a more singular fate.We do not knowwhat is
inside a gravitational black hole. We do not know if white
holes do exist or not in the Universe despite their reality in
the kitchen sink (the circular jump). We do not know if
cosmological wormholes are science-fiction objects.
This paper has tried to nurture our thoughts by using an
analogy and maybe humanity will have the chance to travel
among stars similarly to gravity-capillary waves surfing on
flowing water.
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APPENDIX A: CORRELATIONS

To verify that the long gravity wave measured upstream
from the obstacle and equally that the capillary wave
observed on the top of the obstacle both come from the
incoming wave sent downstream, we use a two-point cross-
correlation function between a window i and a window j
(see Figs. 10 and 11) that was employed recently to
measure the spontaneous Hawking radiation at a white
hole horizon [37]:

Gði;jÞ
2 ðω; k; k0Þ ¼ jhδ ~hðiÞðω; kÞδ ~hðjÞðω; k0Þ�ij: ðA1Þ

We consider that the sign of the wave number is positive
for the incoming wave propagating in the −x direction.
We decide to separate the three cameras to have three

distinct windows where the water depth and the velocity are
constant (upstream from the obstacle, on the top of the
obstacle and downstream from the obstacle; see Fig. 10).
Because the amplitudes of the waves are very small (they

may be inferior to 0.1 μm), we remove the noise in the
result. First, in order to suppress the stochastic noise
produced by the turbulent flow, we divide the data into
64 equal time intervals and we calculate the average of their
Fourier transform. Then, to suppress the noise intrinsic to
the experiment (due to either the pump vibration which
may induces a global oscillation of the free surface on the
total length of the water channel or any other external
perturbations), we apply the same procedure to a case
without an incoming wave and we subtract this determinist
noise to the previous result (see Fig. 11):

δ ~hðω; kÞ ¼ hjδ ~hwaveðω; kÞji − hjδ ~hno waveðω; kÞji: ðA2Þ

We verify easily in Fig. 11 that the incoming/capillary/
transmitted wave is a solution of the dispersion relation in

FIG. 10. The studied windows: upstream from the obstacle
(Wup), on the top of the obstacle (Wtop), downstream from the
obstacle (Wdown).
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the downstream/top/upstream region. In the upstream
region of Fig. 11 (bottom) we observe long gravity waves
which are not blocked downstream because their frequen-
cies are smaller than ωmin and their amplitudes are of the
order of the transmitted wave amplitude which has suffered
from viscous damping. Despite our noise-removing pro-
cedure, we are unable to cancel them but fortunately we can
still isolate the incoming frequency which is slightly
superior to ωmin. In the downstream region, these waves
are also present albeit we do not see them in Fig. 11 (top)
because their amplitudes are much smaller than the one of
the incoming wave.
We underline that Fig. 11 (top) allows us to extract the

initial incoming amplitude before the obstacle in the
window Wdown. From the spatial Fourier transform at

ωI ¼ 14.17 Hz, we find from the peak in the Fourier space
its maximum which will be considered as our initial
incoming amplitude a0 ¼ 11.53 μm.
To quantify the strength of the correlations, we compute

gði;jÞ2 ðω; ka; kbÞ ¼
Gði;jÞ

2 ðω; ka; kbÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gði;iÞ

2 ðω; ka; kaÞGðj;jÞ
2 ðω; kb; kbÞ

q :

ðA3Þ
We obtain for the cross correlation between the incident

wave end the capillary wave a correlation strength

of gðdown;topÞ2 ðωi; kI; kCÞ ¼ 85.11%, between the capillary

wave and the transmitted wave gðtop;upÞ2 ðωi; kC; kTÞ ¼
94.43% and between the transmitted and the incident wave

gðup;downÞ2 ðωi; kT; kIÞ ¼ 80.98%.

FIG. 11. Two-dimensional Fourier transforms of the free
surface fluctuations δ ~hðiÞðω; kÞ for each i window [obtained with
Eq. (A2)]. Top: Downstream from the obstacle. Center: On the
top of the obstacle. Bottom: Upstream from the obstacle. The
amplitudes are in microns.

FIG. 12. Cross-correlation function Gði;jÞ
2 ðω; k; k0Þ for each

couple of windows ði; jÞ. Top: ðd; tÞ couple. Center: ðt; uÞ couple.
Bottom: ðu; dÞ couple. The amplitudes are in μm2.
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For completeness, we plot the correlation maps

Gði;jÞ
2 ðω; k; k0Þ in the ðk; k0Þ wave-vector plane for each

region in Fig. 12 [37] and we check that the experimental
correlation peaks coincide with the theoretical prediction
for each couple of wave vectors (symbolized by the red
circles).

APPENDIX B: THEORETICAL ESTIMATION
OF THE AMPLITUDE EVOLUTION
CONSIDERING THE WAVE ACTION

CONSERVATION AND THE DISSIPATION

First, we need to estimate the flow over the obstacle to
know the parameters like UðxÞ involved in the dispersion
relation at each space position x. Past velocity measure-
ments (not reported here) over the same obstacle but with
different flow configurations (flow rate and water depth)
have shown that a boundary layer is created in the down-
stream part due to the descending slope of the obstacle. The
position of the boundary layer where it matches the uniform
flow seems to be approximatively equal to the maximum
height of the obstacle. This boundary layer modifies the
velocity at the free surface (due to the flow rate conserva-
tion) and we need to take into account the effect of vorticity
in the dispersion relation.
We base our reasoning to estimate the spatial evolution

of the free surface on an analytical resolution of the
dispersion relation for surface wave propagation on a shear
flow with constant vorticity (see details in [35]):

ω ¼ −
�
U0k −

α

2
tanhðkhÞ

�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
α

2
tanhðkhÞ

�
2

þ
�
gkþ γ

ρ
k3
�
tanhðkhÞ

s
; ðB1Þ

where U0 > 0 is the current speed at the free surface
flowing in the þx direction, α ¼ U0=h the parameter
characterizing the flow vorticity, γ ¼ 73 × 10−3 N=m the
surface tension and ρ ¼ 103 kg=m3 the density of water.
In our case the vertical velocity profile is not linear so we

apply a simplified model to approximate the vertical flow
profile where the latter is linear from the bottom
(or obstacle) to the boundary layer limit and constant from
the boundary layer limit to the free surface (see Fig. 13).
With this assumption, we correct the parameter character-
izing the flow vorticity by a coefficient equal to the
thickness of the boundary layer (α ¼ RU0=h with the ratio
R ¼ e=h). Moreover, we can express the surface velocity as
a function of the experimentally imposed flow rate
U0 ¼ ðQ=WhÞð1 − R=2Þ−1.
According to Bretherton and Garrett [56], the quantity

conserved in a wave-current interaction process is the wave
action density A0 ¼ E0=ω0 with E0 ¼ 1

2
a2ðρgþ γk2Þ the

wave energy density and ω0 the relative frequency both in

the flow frame denoted by a prime (the wave energy density
is not conserved since the waves exchange energy with
the spatially varying flow). This conservation leads to a
constant wave action flux for all space positions x (assum-
ing stationarity) written as

J ¼ 1

2
a2ðρgþ γk2Þ vg

ω0 ∼ a2ð1þ l2ck2Þ
vg
ω0 ðB2Þ

with J ¼ A0vg the wave action flux, a the wave amplitude,

ρ the water density and lc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
γ=ðρgÞp

the capillary length.
The group velocity in the laboratory frame vg, the relative
frequency in the flow frame ω0 and the wave number k are
given in each position x by the dispersion relation (B1).
Equation (B2) allows one to compute the evolution of the
wave amplitude when the flow varies in a nondissipative
regime. We underline forcefully that we use here the
expression of the wave action density assuming no vor-
ticity. The latter enters into the dispersion relation and the
group velocity in order to compute the conservation of
wave action flux. This approximation is sufficient at our
level. An exact expression for the wave action density for a
linear shear profile was derived by Jonsson, Brink-Kjaer,
and Thomas in 1978 but it implies some complications that
we avoid in our simple estimation [57]. In particular, the
converted waves such as the capillary waves have a
wavelength smaller than (h − e) so we can assume that
they “feel” a uniform vertical velocity profile.
As we have been forced to rescale the amplitude scales in

three separate windows to display the decrease of the wave
amplitude during the propagation and thanks to the knowl-
edge of the exponential damping [53,54], we can remove
the latter and show our results cleaned from the effect of
viscosity in Fig. 14, where we plot both a free surface
variation at a given time within the undamped envelope
(top) as well as a three-dimensional space-time diagram
with the same vertical scale (bottom).
To take into account the effect of exponential dissipation

of the wave amplitude, we introduce the dissipative length

FIG. 13. Model representing the development of the boundary
layer in the descending part of the obstacle. The red dashed curve
corresponds to the thickness of the boundary layer (e).
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based on the Lamb formula (see an extensive discussion on
the effect of dissipation in the context of analogue gravity
in [54]):

Ld ¼
vg
2νk2

; ðB3Þ

where ν ¼ 1.05 × 10−6 m2=s is the viscosity of pure water
at 18 °C. We assume that the fluorescent dye we used
namely fluoresceine does not modify too much the value of
viscosity.
In the wormhole tunnel, the capillary wave envelope is

constant. Before the tunnel (on the right in Fig. 14), one
observes an interference modulation of the envelope due to
the existence of the transverse mode due to finite width of
the channel. After the tunnel (on the left in Fig. 14), one
also sees another interference modulation of the envelope
due to the reflection on the wall of the transmitted wave T at
the end of the water channel because of its finite length.

Combining the conservation of the wave action density
[Eq. (B2)] and an exponential decrease due to the dis-
sipation [considering the dissipative length (B3)], we can
compute the “geometrical optics” evolution of the ampli-
tude starting from the initial amplitude a0 ¼ 11.53 μm on
the downstream part (at the right of the obstacle) before the
wormhole travel:

aðiþ1Þ
aðiÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jvgðkðiÞÞj
jvgðkðiþ1ÞÞj

ω0ðkðiþ1ÞÞ
ω0ðkðiÞÞ

1þ l2ck2ðiÞ
1þ l2ck2ðiþ1Þ

vuut e−jδxj=LdðiÞ :

ðB4Þ

The subscript (i) corresponds to the variable taken at a
spatial position x, and (iþ 1) at xþ δx. The sign of δx
depends of the propagation direction of the solution.
Figure 15 shows a fairly good agreement between the
geometrical solution obtained with Eq. (B4) and the
experimental results; the differences may come from
the hypotheses about the model of the velocity profile,
the expression of the energy or the dispersion relation in the
presence of vorticity.
We also see in Fig. 15 some undulations in the envelope:

for example, between x ¼ −0.63 m and x ¼ −0.28 m.
Those interferences come from other waves existing in
the experiment. We will try to identify these waves,
separating four distinct zones of interferences:
zone 1: before the first conversion (from x ¼ 0.27 m
to x ¼ 0.50 m),
zone 2: after the first double bouncing (from x ¼ 0.09 m
to x ¼ 0.25 m),
zone 3: before the second double bouncing (from
x ¼ −0.25 m to x ¼ −0.16 m),

FIG. 14. (Top) Free surface variations δhðωI ; xÞ at a given time
with its corresponding envelope for the fixed frequency of the
incoming wave ωI ; (bottom) three-dimensional space-time dia-
gram with a fixed vertical scale for the amplitude variations. For
both graphics, viscous dissipation was removed to have the same
vertical scale.

FIG. 15. The black curve shows the spatial evolution of the free
surface fluctuations filtered at the frequency of the incoming
wave for a given time, the blue dashed curves is the envelope
δhðωI ; xÞ and the red curve is the result of the geometrical optics
calculation based on Eq. (B4).
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zone 4: after all conversions (from x ¼ −0.63 m to
x ¼ −0.28 m).
To deduce this interferences, we use the general formula

of the spatial envelope An of the interference pattern of n
waves:

An ¼
�Xn

i¼1

Xn
j¼1

aiaj cosððki − kjÞx − ðϕi − ϕjÞÞ
�

1=2
;

ðB5Þ

where ϕi is the phase shift and ki the wave number of the
mode i with amplitude ai. ai, ki and ϕi can depend on the
space position x.

For the peculiar case where there are only two waves
involved, Eq. (B5) can be reduced to

A2 ¼ ða21 þ a22 þ 2a1a2 cosððk1 − k2Þx − ðϕ1 − ϕ2ÞÞÞ1=2
ðB6Þ

and the phase shift difference of the interference pattern can
be written ϕ1 − ϕ2 ¼ ðk1 − k2Þxϕ, where xϕ is one of the
maxima of the interference pattern. Figure 16 shows an
example of a two wave interference.
Zone 1 (Fig. 17 right).—The interference in the region

where an oscillation around the amplitude of the incident
wave is observed could be explained by the superposition
of the latter with a transverse mode. Since we need to take
into account the vorticity in this region, we suppose that the
dispersion relation for waves with two components—
longitudinal and tranverse—projected on x⃗ is

ω ¼ −
�
U0kx −

α

2

kx
k
tanhðkÞ

�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
α

2

kx
k
tanhðkÞ

�
2

þ
�
gkþ γ

ρ
k3
�
tanhðkÞ

s
ðB7Þ

with k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
. Previously, we have considered waves

with only a longitudinal component k ¼ kx and ky ¼ 0. In
this case, because of the finite width of the water channel,
we have a quantization of the transverse component with
ky ¼ ðnπ=WÞ (n ∈ N and W is the width of the water
channel).
The measurement is done in the center of the channel, so

only half of the transverse modes are taken into account
(n ∈ 2N). We check theoretically that the only even mode
existing for the incoming frequency is n ¼ 2.
By assuming arbitrarily that the amplitude of the trans-

verse component ky is equal to half the one of the

FIG. 16. Example of a two wave interference with
yi ¼ ai cos ðkix − ωt − ϕiÞ, ω ¼ 1 Hz; the blue curves corre-
spond to t ¼ 1.5 s and the red one to t ¼ 4.4 s. Top: First wave
(i ¼ 1) with a1 ¼ 1 (dimensionless amplitude), k1 ¼ 10 m−1 and
ϕ1 ¼ 3.2. Center: Second wave (i ¼ 2) with a2 ¼ 0.5, k2 ¼
16 m−1 and ϕ2 ¼ 6.7. Bottom: Wave superposition; the black
curves indicate the spatial envelope A2 (and −A2) of the
interference pattern with xϕ ¼ 0.463 m.

FIG. 17. Experimental envelope (blue line), geometrical solution (red line), Airy tails (green line) and interference fits (black dashed
line).
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longitudinal component kx, we recover our experimental
results with a corresponding fitting curve. This strong
hypothesis relies on our visual observations of the free
surface with the interference patterns between the longi-
tudinal and transverse components over the obstacle in the
probed window.
Knowing the amplitude of the two waves and their wave

numbers, we apply Eq. (B6) where xϕ is an arbitrary
maximum of interference read directly on the envelope
δhðωI; xÞ in zone 1.
Zone 2 (Fig. 17 center right).—Prima facie, there is only

the capillary wave if we consider the geometrical solution
using Eq. (B4) but we need to consider that, when the
incident wave is converted into a blueshifted wave (at the
white horizon), the amplitude of this double solution does
not go to zero immediately after the horizon but decreases
on a certain distance. This looks like an Airy function [27],
at least for the decreasing part (we are not interested in the
oscillating part of the Airy function since the distance
between the white and blue horizons is shorter than one
local wavelength). We compute an Airy function a�AiðXÞ,
where −X ¼ ðx − x�Þ=Ls (we put a minus sign before X
because the decreasing part of the Airy function is defined
for x > x� and in this case, it is observed for x < x�), x� is
the position the blocking point, Ls is the stopping length
and a� the amplitude at x� [32]. The stopping length can be
calculating with different formulas, for example the one
introduced by Trulsen and Mei in 1993 [32,50]:

Ls ¼
�

U2�
2k�ωð∂U∂xÞx�

�
1=3

; ðB8Þ

where U� is the velocity, k� the wave number, and ð∂U∂xÞx�
the velocity gradient, all taken at the blocking point x�.
We found in our case for the white horizon (from

incident to blueshifted waves) Ls ¼ 0.0427 m. Then, we
use Eq. (B5) to deduce the envelope.

Zone 3 (Fig. 17 center left).—We applied the
same procedure as in the second zone; we have, on one
hand, the capillary wave and, on the other hand, the tail of
the Airy function due to the conversion from the redshifted
to the transmitted waves. In this case, X ¼ ðx − x�Þ=Ls
and the stopping length [using Eq. (B8)] is found to
be Ls ¼ 0.0340 m.
Zone 4 (Fig. 17 left).—Because the water tank is not

infinitely long, the transmitted wave is reflected by the end
wall in the convergent part of the water channel (see Fig. 1).
The amplitude of this reflected wave can be calculated with
Eq. (B4) (considering that all of the wave action density is
reflected). In our case, this amplitude is about half the
transmitted amplitude. Considering also the transverse
mode, in the same way as zone 1, we obtain an interference
between three waves again.
The geometrical solution [calculated with Eq. (B4),

called in the next athv ] matches with the experimental
result, and we can obtain another geometrical solution
(called in the next athnv) where the exponential term in
Eq. (B4) is removed to stay in a nondissipative regime.
Then, we can redress our experimental result using

aexpnv ðxÞ ¼ aexpv ðxÞ a
th
nvðxÞ
athv ðxÞ

: ðB9Þ

This procedure allows to see more clearly in Fig. 14 the
conversion from long to capillary waves within the white
hole region and from capillary to long waves on the other
side of the wormhole within the black hole region.
There is a lot of estimation in this method (simplified

model for the velocity field, dispersion relation including
vorticity, Airy function, interference pattern, etc.) but the
quite good superposition of this theoretical estimation and
the experimental results confirm its validity. Avelocity field
measurement of the flow over the obstacle would be
necessary to verify our estimations but it is outside the
scope of this study.
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