
Hawking radiation and the boomerang behavior of massive modes near a horizon

G. Jannes,1,2 P. Maı̈ssa,1 T. G. Philbin,3 and G. Rousseaux1,*
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We discuss the behavior of massive modes near a horizon based on a study of the dispersion relation and

wave packet simulations of the Klein-Gordon equation. We point out an apparent paradox between two

(in principle equivalent) pictures of black-hole evaporation through Hawking radiation. In the picture in

which the evaporation is due to the emission of positive-energy modes, one immediately obtains a

threshold for the emission of massive particles. In the picture in which the evaporation is due to the

absorption of negative-energy modes, such a threshold apparently does not exist. We resolve this paradox

by tracing the evolution of the positive-energy massive modes with an energy below the threshold. These

are seen to be emitted and move away from the black-hole horizon, but they bounce back at a ‘‘red

horizon’’ and are reabsorbed by the black hole, thus compensating exactly for the difference between the

two pictures. For astrophysical black holes, the consequences are curious but do not affect the terrestrial

constraints on observing Hawking radiation. For analogue-gravity systems with massive modes, however,

the consequences are crucial and rather surprising.
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I. INTRODUCTION

A. Black hole evaporation through the emission
of positive-energy Hawking modes

The evaporation of black holes through Hawking radia-
tion is one of the cornerstones of post-classical gravity
[1–3]. In Hawking’s original derivation [1] for the case
of a gravitational collapse, the emphasis lay on the
positive-energy modes that cross the horizon just before
it is actually formed, escape from the black hole space-
time, and can in principle be detected by an asymptotic
observer. Hawking already observes that the decrease of
the black-hole mass, and the accompanying decrease of the
area of the event horizon, ‘‘must, presumably, be caused by
a flux of negative energy across the event horizon which
balances the positive energy flux emitted to infinity. One
might picture this negative energy flux in the following
way. Just outside the event horizon there will be virtual
pairs of particles, one with negative energy and one with
positive energy. The negative particle . . . can tunnel
through the event horizon to the region inside the black
hole . . . In this region the particle can exist as a real particle
with a timelike momentum vector even though its energy
relative to infinity as measured by the time translation
Killing vector is negative. The other particle of the pair,
having a positive energy, can escape to infinity where
it constitutes a part of the thermal emission described
above.’’ Hawking warns, however, that it ‘‘should be em-
phasized that these pictures of the mechanism responsible

for the thermal emission and area decrease are heuristic
only and should not be taken too literally.’’
With regard to massive particles, Hawking notes that

‘‘As [the black holes] got smaller, they would get hotter
and so would radiate faster. As the temperature rose, it
would exceed the rest mass of particles such as the electron
and the muon and the black hole would begin to emit
them also.’’ Therefore, ‘‘the rate of particle emission in
the asymptotic future . . . will again be that of a body with
temperature �=2�. The only difference from the zero rest
mass case is that the frequency ! in the thermal factor
ðexpð2�!��1Þ � 1Þ�1 now includes the rest mass energy
of the particle. Thus there will not be much emission of
particles of rest mass m unless the temperature �=2� is
greater than m.’’ A similar conclusion was reached in [4].
Indeed, for the black hole to emit, for example, an elec-
tron,1 its temperature must be on the order of T ¼ 109

Kelvin.2 Because of emission of massless particles the
black hole will eventually become small enough for the
temperature to reach 109 K, and then the radiation will
contain electrons and positrons. But for most of the life-
time of the black hole, the mass cutoff prevents any
(significant) radiation of electrons.
Implicit in the above reasoning is that the black-hole

emission corresponds (by definition) to what can be de-
tected by an asymptotic observer. This definition makes

*Germain.Rousseaux@unice.fr

1We neglect complications [5] due to the electrical charge.
2From mc2 ¼ kBT and using me ¼ 9:11� 10�31 kg, one ob-

tains T ¼ 5:93� 109 Kelvin. This rough estimate is in agree-
ment with [2] (see p. 261). The associated frequency, from
ℏ! ¼ mc2, is !c ¼ 7:76� 1020 Hz.
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sense from a relativistic point of view because a black hole
in relativity is, strictly speaking, not just the central object
enclosed by a horizon, but also the entire space-time
surrounding it. This definition however has various well-
known complications, for example, that, strictly speaking,
one needs an infinite amount of time to ascertain the
existence of a black hole. In an astrophysical sense, there-
fore, the alternative definition in which the black hole is
only what lies beyond the horizon makes much more sense.
In the context of analogue gravity, which we will discuss in
Sec. VII, only the horizons are the essential ingredient and
it makes little sense to speak of asymptotic observers. One
can already anticipate that, from this second point of view,
what is emitted by the black hole (i.e., what moves away
from the horizon) is not necessarily equal to what is
detected at infinity. As we will see, the difference can
actually be substantial.

B. Black hole evaporation through the absorption
of negative-energy Hawking modes

Hawking’s heuristic picture in which the black hole
shrinks through the absorption of negative-energy modes
was given a physical basis in the following context. An
important problem with Hawking’s calculation is the
so-called ‘‘trans-Planckian problem’’: the exponential
frequency-shift near the horizon means that particles de-
tected just seconds after the formation of the black hole
seemingly originate from modes with an energy exceeding
by far the total energy of the observable universe just
before the formation of the black hole. In 1981, in what
is usually considered the founding paper of analogue
gravity (see [6] for a review), Unruh [7] noted that the
propagation of sound waves in a fluid with a subsonic-to-
supersonic transition is formally identical to the propaga-
tion of scalar fields in a black-hole space-time. Since the
continuum description of fluid systems has a natural cutoff
(the intermolecular distance), the trans-Planckian problem
of Hawking radiation can be studied in this fluid-analogy
context. Unruh took up his own suggestion and studied the
(typically ‘‘subluminal’’) modification of the dispersion
relation for sound waves compared to a ‘‘relativistic’’ or
acoustic one, and its influence on the Hawking spectrum
[8]. For such subluminal dispersion, an outgoing positive-
energy Hawking packet can be traced back to a mixed
positive/negative-energy mode originating from outside
the horizon. If the dispersion is changed to superluminal
then the positive-energy mode originates from inside the
horizon, but this difference does not alter the size of the
Hawking effect compared to the subluminal case. This
suggests that the evaporation (loss of mass) of the black
hole does not rely so much on this positive-energy emis-
sion, but instead has its physical origin in the absorption of
the negative-energy partner. The negative-energy mode is
always consumed by the black hole, regardless of the de-
tails of the high-energy dispersion.

It is far beyond our intention to clear up the exact
physical origin of Hawking emission and black hole evapo-
ration. What we do want to point out, however, is the
following. The emission of massive positive-energy modes
immediately seems to be limited by a lower cutoff, as
pointed out above, since the energy of a massive mode in
the flat space-time of an asymptotic observer cannot be less
than its mass-energy. This is not the case, however, for the
absorption of massive negative-energy modes, since these
fall into the black hole and so never obey the flat space-
time dispersion relation. In fact, as we will discuss in
detail, the process of creation of positive/negative-energy
pairs near the horizon is not restricted by the mass of the
corresponding modes. Massive negative-energy modes are
created and absorbed by the black hole according to ex-
actly the same mechanism and at exactly the same rate3 as
massless modes. Since the two pictures of black-hole
evaporation through Hawking radiation (either through
the emission of positive-energy modes or through the
absorption of negative-energy modes) should in principle
lead to exactly the same evaporation rate, this raises an
apparent paradox. The paradox is qualitatively easy to
solve: all positive-energy modes emitted with energy (rela-
tive to asymptotic infinity) below the rest-mass energy
must somehow be reabsorbed by the black hole in order
to counterbalance the ‘‘excess’’ negative-energy absorp-
tion. A detailed analysis of how this process takes place
leads to some curious consequences, and, in particular, to
several potentially crucial aspects for experiments in ana-
logue gravity systems with massive modes.
Before starting our analysis, note that we will talk about

massive modes to avoid any caveats concerning the defini-
tion of particles in a curved space-time. This is not just a
matter of terminology. Strictly speaking, particles do not
go on-shell until they have reached the flat region of space-
time (either at infinity, or when they are trapped by the
potential well of a particle detector before reaching infin-
ity). Care should therefore be taken when reasoning in
terms of particles. For example, the usual heuristic argu-
ment about particle pair creation near the horizon (due to
the effect of curvature on a distance of the order of the
Compton wavelength) might induce one to think that mas-
sive particle pairs are created near a black-hole horizon
only when the action is sufficient to provide an energy
at least equal to the pair’s mass. This argument might
be useful in that it correctly reproduces the threshold
for particles to appear at infinity, as mentioned above.
However, in order to make estimates about what happens
anywhere between the black-hole horizon and infinity, it
can be quite deceptive, and it is more indicated to reason
in terms of modes or wave packets, as we will do.

3Again, modulo complications [5] due to, e.g., the electrical
charge. We do not consider the Dirac equation, although the
dispersion relation discussed below also applies in that case.
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For analogue-gravity systems, such complications do not
usually arise because the emitted modes are in general
phonons or other collective excitations, which are in any
case naturally described in terms of waves rather than
particles. Moreover, the configurations considered for ex-
perimental detection of analogue Hawking radiation are
typically stationary and have an asymptotically constant
background flow velocity U. The ambiguity of the quan-
tum vacuum definition in a nonstationary curved space-
time [2] does therefore not arise here (see [9] for useful
remarks in the case of phonons in a BEC). We will
come back extensively to the question of detectability in
Secs. VI and VII.

II. DISPERSION RELATION FOR MASSIVE
MODES IN A BLACK HOLE SPACE-TIME

The general dispersion relation for massive Klein-
Gordon modes trying to escape a black hole can be written

ð!�UkÞ2 ¼ m2 þ c2k2: (1)

Note that, strictly speaking, the mass M of the mode is
given by M ¼ mℏ=c2. We set ℏ ¼ 1 and will refer
throughout to m as the mass. As usual, U < 0 can either
represent the velocity of an observer freely falling into
the black hole (in the case of gravity), or the velocity of
a background flow against which the mode counter-
propagates (for analogue-gravity systems). Both cases
are described by exactly the same Painlevé-Gullstrand-
Lemaı̂tre metric

ds2 ¼ ½c2 �UðxÞ2�dt2 � 2UðxÞdtdx� dx2 (2)

where x̂ is the direction perpendicular to the horizon
(which contains all the essential features that we are inter-
ested in4), and c represents the speed of light, or in ana-
logue gravity the (low-frequency) speed of sound or any
other characteristic velocity of the system which leads to
an effective relativistic behavior (typically) at low frequen-
cies. The strict equivalence (at least at low frequencies)
means that we do not have to worry about terminology, and
so we will typically refer quite generally to, for instance,
jUj ¼ c as the ‘‘sonic’’ case, U as the ‘‘background flow,’’
and ‘‘counter-propagating modes’’ for modes that try to
escape the black hole (or enter a white hole), as if they were
moving against a background flow.

The action of the Klein-Gordon field � in the
metric (2) is

S ¼ 1

2

Z
dtdx

�
1

c2
j@t�þU@x�j2 � j@x�j2 �m2

c2
j�j2

�
;

(3)

which gives the field equation

@tð@t�þU@x�Þ þ @xðU@t�þU2@x�Þ
� c2@2x�þm2� ¼ 0 (4)

and the dispersion relation (1). Wave packets obeying the
Klein-Gordon Eq. (4) possess two conserved quantities due
to the invariance of the action (3) under (1) the trans-
formation � ! ei��, � constant, and (2) time translation
(for time-independent U). The former invariance gives
conservation of the Klein-Gordon norm

N¼ i

2c2

Z 1

�1
dx½��ð@t�þU@x�Þ��ð@t�� þU@x�

�Þ�;
(5)

whereas the latter gives conservation of (pseudo-)energy

E¼ 1

2

Z 1

�1
dx

�
1

c2
j@t�j2þð1�U2=c2Þj@x�j2þm2

c2
j�j2

�
:

(6)

For waves packets confined to a region where the flow
velocity U is constant, the Klein-Gordon norm (5) can be

written in k-space in terms of the Fourier transform ~�ðkÞ as

N ¼ 1

c2

Z 1

�1
dkð!�UkÞj ~�ðkÞj2; (7)

while in similar circumstances the energy (6) takes the
form

E ¼ 1

c2

Z 1

�1
dk!ð!�UkÞj ~�ðkÞj2: (8)

The quantity that determines the sign of the norm (5) of a
wave is the sign of its frequency !�Uk in a frame
comoving with the background flow U. For waves with
positive values of the frequency ! in the black hole/lab
frame, the sign of the (pseudo-)energy (6) is also given by
the sign of the comoving frequency !�Uk.
A key point is that the dispersion relation (1) far away

from the black hole (in Minkowski space-time) is

!2 ¼ m2 þ c2k2; (9)

which does not allow any particles with !<m. However,
sufficiently close to the black-hole horizon U ! �c, so
from (1) massive modes can in principle be created even at
frequencies 0<!<m.
We will now plot the dispersion relation (1), i.e.

!�Uk ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ c2k2

p
; (10)

for values of !> 0 greater than or less than the mass m.
For fixed! the left- and right-hand sides of (10) are plotted
as functions of k; the intersection points of these plots are

4Note that a bouncing effect similar to what we will describe
also exists for (even massless) modes with nonzero angular
momentum, see e.g. [10], as is well known. The crucial differ-
ence is that the bouncing which we will describe is valid even for
modes that move away from the black hole in a purely radial
fashion. It is therefore truly a consequence of the mass of the
modes.
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the solutions of the dispersion relation. Figs. 1 and 2
represent the positive-frequency branch of the dispersion
relation (plus sign in (10)), while Fig. 3 depicts the
negative-frequency branch (minus sign in (10)). Note that
‘‘positive/negative-frequency’’ always refers to the comov-
ing frequency (!�Uk), and therefore coincides with the
concept of positive/negative norm, as just mentioned. We
always draw U < 0 (a flow moving to the left) and will
focus on the modes counter-propagating against the flow,
i.e. modes moving to the right in a frame comoving with
the flow. The counter-propagating modes have positive
phase and group velocities in the frame comoving with
the flow: ð!�UkÞ=k > 0, dð!�UkÞ=dk > 0. Our inter-
est is in counter-propagating modes because these modes
try to escape the black hole (or enter a white hole).

A. ! >m (positive-frequency part)

The case !>m is very similar to the standard massless
case, see Fig. 1. In the absence of a counterflow, i.e. far

away from the black hole [Fig. 1(a)], there are two
positive-frequency roots k1 and k2 ¼ �k1 with the same
modulus and opposite direction of propagation. When
U � 0 [Fig. 1(b)], the situation depends on the value of
U: for jUsubj< c, there are two positive-frequency roots
k1 < 0 and k2 � �k1; for jUsonicj ¼ c and jUsuperj> c,

only one positive-frequency root remains, namely, the
mode k1 < 0 copropagating with the background flow U.
For jUsuperj> c, the second root k2 has actually been

converted into a counter-propagating negative-frequency
root, see Fig. 3. This conversion from positive to negative
frequency across the horizon is precisely the essence of the
Hawking mechanism (at least in the case where there are
no higher-order k-terms in the dispersion relation). For
jUsonicj ¼ c, k2 has ‘‘disappeared’’: k2 ! þ1 when
jUj ! c�, and reappears as k2 ! �1 when jUj ! cþ.
This infinite frequency-shift at the horizon (jUsonicj ¼ c) is
characteristic of the trans-Planckian problem, which
(just like in the massless relativistic case) is present in
our problem since we do not consider higher-order
k-terms in the dispersion relation in our present
discussion. Note that the exact values of the different
roots will be slightly different compared to the massless
case, but in qualitative terms the behavior for the positive-
frequency modes associated with !>m is identical to the
massless case.

B. ! <m (positive-frequency part)

For!<m, important differences with the massless case
show up, see Fig. 2. For U ¼ 0 (not shown), there are no
positive-frequency !<m solutions to the dispersion
relation, in accordance with (9). For jUsonicj ¼ c and
jUsuperj> c, there is only one positive-frequency root.

Curiously, and contrarily to the case !>m, the single
remaining mode here is a counter-propagating mode, while
the mode copropagating with the background flow is for-
bidden. For jUsubj< c, the number of roots depends on the
value of U: for sufficiently large jUj [Fig. 2(a)], there are
two positive-frequency roots. These are both counter-
propagating, but only one of them (with the higher k) has
a positive group velocity d!=dk > 0 in the black hole/lab
frame, while the other one is dragged along by the back-
ground flow and has negative group velocity relative to the
black hole. For a critical value U� of U [Fig. 2(b)], these
two solutions merge and only one (double) root k� remains.
For even smaller values of jUj, as in the case of U ¼ 0,
there are no longer any positive-frequency solutions. These
two k > 0 roots that merge at k� correspond to the same
counter-propagating mode; it propagates away from the
horizon (positive group velocity), experiences a turning
point when the flow has decreased to U�, and is dragged
back into the black hole (negative group velocity).
The positive-frequency mode with 0<!<m thus
exhibits a boomerang trajectory: after being emitted
away from the horizon it returns, and falls into the black

FIG. 1 (color online). Positive-frequency part of the dispersion
relation (10) for !>m and (a) U ¼ 0, (b) various values of
U < 0. k < 0 corresponds to copropagating modes, k > 0 to
counter-propagating ones. The massless sonic branches
!�Uk ¼ �ck are indicated (dashed red lines) for comparison.
Qualitatively, the !>m massive case is identical to the mass-
less case.
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hole. This boomerang behavior is further illustrated below
by a ray plot and a wave packet simulation.

C. Negative-frequency part (all values of !)

The negative-frequency part is shown in Fig. 3. The
behavior of the negative-frequency modes is independent
of the value of !> 0. It is essentially the same as in
the massless case: inside the horizon (where jUj ¼
jUsuperj> c), a single negative-frequency solution exists.

Outside the horizon (jUj � c), there are no negative-
frequency solutions. This corresponds precisely to the
‘‘disappearance’’ of the positive-frequency k2-solution
in the massless and !>m cases: k2 converts from a

positive-frequency root into a negative-frequency root
across the horizon.
The key point, however, is that this same appearance of a

negative-frequency root when jUj> c is also valid for the
case !<m. Moreover, since this negative-frequency
mode is absorbed by the black hole and hence moves
into a region where jUj increases, its existence is allowed
at all times during its subsequent evolution.

III. DETERMINATION OF U�

We have seen graphically that in the case !<m, there
exists a critical background flow velocity U� such that, for
jUj> jU�j, there are two (counter-propagating) positive-
frequency solutions, whereas for jUj< jU�j, both these
solutions disappear. For jUj ¼ jU�j, there is therefore a
double root k� or a saddle-node bifurcation in dynamical-
systems language [11,12].
ForU2 � c2, the dispersion relation (1) can be written as

k2 � 2!U

U2 � c2
kþ!2 �m2

U2 � c2
¼ 0; (11)

with a discriminant

� ¼ 4!2U2

ðU2 � c2Þ2 � 4
!2 �m2

ðU2 � c2Þ2 ðU
2 � c2Þ: (12)

There will be real solutions for k as long as � � 0, i.e.
U2 � c2½1� ð!=mÞ2�. The general solution for the roots
k1;2 is then

k1;2 ¼ !U

U2 � c2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð!2 �m2ÞðU2 � c2Þ

!2U2

s �
: (13)

The critical value U� can be obtained by requiring � to
vanish. This can only be satisfied when !<m, and gives

FIG. 2 (color online). Positive-frequency part of the dispersion
relation (10) for 0<!<m and various values of U < 0. For the
value of jUsubj< c shown in (a), there are two counter-
propagating (k > 0) modes, one with a positive group velocity
d!=dk > 0 in the black-hole/lab frame, the other with a negative
group velocity in this frame. In (b), Usub ¼ U�, the critical value
at which these two solutions merge and only one (double) root k�
remains. For jUsubj< jU�j, there are no longer any positive-
frequency modes.U� is therefore characteristic of a turning point
or ‘‘red horizon’’ (see main text). The massless sonic branches
!�Uk ¼ �ck are again indicated (dashed red lines) for com-
parison. Note that all copropagating modes (k < 0) have dis-
appeared, while the number of counter-propagating modes
(k > 0) depends on the value of U.

FIG. 3 (color online). Negative-frequency part of the disper-
sion relation (10) for !> 0. The behavior is independent of
whether !<m or !>m, and is qualitatively identical to the
massless case (in dashed red line). For jUsubj< c and jUsonicj ¼
c, there are no negative-frequency solutions. A single counter-
propagating negative-frequency root appears for jUsuperj> c.
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U� ¼ �c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
!

m

�
2

s
; (14)

with a corresponding critical wave number

k� ¼ �m2

!c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
!

m

�
2

s
: (15)

As we consider flows UðxÞ< 0, the lower signs apply in
(14) and (15). The critical value (14) occurs outside the
black hole horizon U ¼ �c and corresponds to a turning
point for the counter-propagating !<m mode as it tries,
and fails, to escape the pull of the black hole.

The case U ¼ �c gives in the dispersion relation (1)

k ¼ �!2 �m2

2!c
(16)

so that only one solution remains (for U < 0). The sign of
the single root depends on the relation between ! and m.
Taking U ¼ Usonic ¼ �c, the solution (16) has k < 0 for
!>m, corresponding to a copropagating mode crossing
the horizon into the black hole. For !<m, k > 0 in (16),
corresponding to a counter-propagating mode being
dragged across the horizon after encountering a turning
point while trying to escape to infinity. These quantitative
results are in agreement with Figs. 1(b) and 2.

If ! ¼ m, then

k

�
k� 2mU

U2 � c2

�
¼ 0 (17)

and the case is qualitatively the same as!>m, except that
there is always one solution at k ¼ 0.

IV. RAY PLOTS ANDWAVE PACKET SIMULATION

We will now plot ray trajectories for the cases !<m
and !>m. This will confirm that, for !<m, there is a
(mass- and frequency-dependent) turning point, where the
outgoing positive-frequency mode is blocked, bounces
back towards the horizon and is reabsorbed by the black
hole.

A. Ray trajectories

We plot in Fig. 4 ray trajectories for counter-propagating
modes that start off infinitesimally close to the horizon on
both sides of it. The mode starting off on the inside
eventually falls down into the interior of the black hole,
independently of its frequency !, since jUj> c inside the
horizon. For modes starting just outside the horizon, the
behavior is completely different depending on whether
!>m or !<m.

For !>m, as in the massless case, modes starting off
just outside the horizon eventually escape to infinity. Note
that the group velocity of the massive mode is slightly
smaller than that of its massless counterpart, and the dif-
ference increases towards low k, as can be seen graphically

from the slope of !�Uk in Fig. 1. However, on the
outside of the horizon, jUj< c, and so d!=dk > jUj, as
can again easily be confirmed graphically from Fig. 1.
This can be interpreted as follows: the mode starts
off with a very high wave number, at which the group
velocity d!0=dk in a frame comoving with the flow
(!0 ¼ !�Uk) barely differs from the massless case, i.e.

x

t

x

t

FIG. 4 (color online). Ray trajectories for 0<!<m (top)
and !>m (bottom) modes trying to escape from a black hole
on both sides of the horizon (green: outside the horizon, blue:
inside the horizon). After remaining extremely close to the
horizon for some time, the modes that started off just inside
the horizon (blue lines) are dragged into the interior of the black
hole. The modes just outside the horizon eventually manage to
escape at least some distance from the black hole. For the case
!>m (green ray on the bottom), they escape to infinity. For
!<m (green ray on the top), the mode escapes some distance
from the horizon, but reaches a turning point or ‘‘red horizon,’’
bounces back and is reabsorbed. The ray trajectories can also be
interpreted as corresponding to modes trying to penetrate a white
hole, by inversing the time direction. The flow then reverses
direction (U > 0) and the interior of the white hole is on the left
of the figures. The counter-propagating rays pile up on the
horizon from both sides (green: from the outside, blue: from
the inside). Note that, for the case !<m (top), the green ray
originates inside the white hole, is ejected, turns around at the
‘‘blue horizon’’ (the time-reverse of the red horizon, see also
main text), tries to enter the white hole again but is unable to
penetrate across the white-hole horizon where it piles up.
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d!0=dkðx ¼ xH þ �Þ 	 c > Uðx ¼ xH þ �Þ, with xH the
position of the horizon and � a small positive quantity. The
mode therefore gradually escapes, and is red-shifted (to-
wards lower k) in the process. The decrease in jUj as the
ray moves away from the horizon is more important than
the decrease in d!0=dk (graphically: the slope d!0=dk is
always larger than jUj), and so the massive mode indeed
escapes.

For !<m, on the other hand, as the massive mode k1
moves away from the horizon and is red-shifted in the
process, it will reach the critical U� beyond which there
are no longer any positive-energy solutions for k. The
process here is typical for a saddle-node bifurcation:
at U� the two roots k1 (with positive group velocity
cg ¼ d!=dk) and k2 (with negative cg) merge and cg
vanishes. The outgoing ray is therefore blocked and turns
back towards the black hole, in a boomerang fashion. In
other words, the outgoing (cg > 0) mode k1 is converted

(red-shifted) into an ingoing (cg < 0) mode k2 when it

reaches the point where U ¼ U�, and is subsequently
reabsorbed by the black hole. Note that the counter-
propagating character of the mode with respect to a back-
ground flow is essential for this behavior, just like a boo-
merang must be thrown against the wind direction
(typically at 45
) in order to come back.

We call the turning point where U ¼ U� a ‘‘red hori-
zon’’ in line with the term ‘‘blue horizon’’ introduced in
[12]: the red horizon is a turning point for red-shifted
waves, and in the whole process at the red horizon the
wave undergoes further red-shifting. We could also reverse
the time direction in Fig. 4 to study what happens for a
mode trying to enter a white hole. In that case, the blocking
line or turning point would be associated with a blue-
shifting process, and we would recover a blue horizon in
precisely the same sense as introduced in [12]. A red
horizon in the black hole case thus corresponds (by time-
inversion) to a blue horizon in the white hole case. Note
that the location of such a red/blue horizon is automatically
frequency-dependent, as we discuss below, even though no
higher-order terms in k have been introduced in the dis-
persion relation.

The bouncing behavior of the green ray in the top plot in
Fig. 4 (0<!<m), together with the continual red-
shifting in time, is shown by a numerical solution for a
Klein-Gordon wave packet centered on this ray, see Fig. 5.
The wave packet at various points in time is shown in
Fig. 5, with time increasing from top to bottom. Initially
the wave packet is outside the horizon (the grey vertical
line) and moves to the right, away from the black hole. The
packet reaches a maximum distance from the horizon
before reversing direction and falling through the horizon
into the black hole. The extreme red-shifting of the wave
packet that accompanies its motion is evident. (The nu-
merical simulation was performed backwards in time,
beginning with the packet inside the black hole and solving

for its history; equivalently, the simulation was performed
forwards in time for the white hole obtained by reversing
the flow U.)

B. Change of red horizon with changing mass
or frequency

The evolution of the red horizon with mass m and
frequency ! is shown in Fig. 6. Note that the existence
of the red horizon assumes 0<!<m.

FIG. 5. Evolution of a Klein-Gordon wave packet with fre-
quency spectrum contained in the range 0<!<m. The grey
vertical line is the horizon of a black hole (interior on the left,
exterior on the right). The packet starts (top) close to the horizon,
propagates away from the black hole, bounces and falls into the
black-hole interior, red-shifting all the way.
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When the mass m is increased, the position of the
red horizon moves closer to the black-hole horizon.
Conversely, if m is decreased (keeping m>!), the posi-
tion of the red horizon moves away from the black-hole
horizon. This is easy to see from the value of the criticalU�
which identifies the red horizon, see Eq. (14): as m in-
creases, jU�j increases, and so lies closer to jUj ¼ c, i.e. to
the black-hole horizon. A massive mode with m ! 1 will
not be able to escape any distance from the horizon, since
jU�j ! c. In the lower limitm ! !, on the other hand, we
obtain U� ! 0, i.e. the mode can asymptotically reach
infinity.

If ! is increased (keeping !<m), the position of the
red horizon moves further from the black hole horizon.
Conversely, if ! is decreased, the position of the red
horizon moves closer to the black hole horizon. This is
again easy to see from Eq. (14). In the limit ! ! 0,
the mode cannot escape any distance from the horizon
(jU�j ! c), whereas in the limit ! ! m, we obtain
jU�j ! 0, so that the mode escapes to infinity.

V. PHASE DIAGRAM

Some of the preceding considerations can be summa-
rized in a phase diagram of flow speed jUj and period
T ¼ 2�=!, see Fig. 7. The purple horizontal dashed line in
Fig. 7 is jUj ¼ c, which represents the black-hole horizon.
It also represents a ‘‘negative horizon’’ [12]: negative-
frequency modes can exist only for jUj> c. This negative
horizon is indicated by a horizontal black line in Fig. 7;
although the negative horizon coincides with the black-
hole horizon in the case discussed here, these two horizons
can separate, for example, in the case of surface waves on
moving water [12].
For massless modes, the purple (and black) line would

strictly mark the only blocking line for modes: all counter-
propagating massless modes have a positive group velocity
d!=dk > 0 in the lab frame as long as jUj< c (they
overcome the background flow), but a negative d!=dk
for jUj> c (they are dragged along by the background
flow). jUj ¼ c therefore marks the only blocking line
(d!=dk ¼ 0) for modes in the massless case.
For massive modes, the picture becomes more compli-

cated. The red line in Fig. 7 shows the critical speed
jUj ¼ jU�j at the red horizon as a function of T. The
vertical dashed green line corresponds to ! ¼ m, i.e.
T ¼ Tm ¼ 2�=m. As T approaches Tm from above the
red horizon moves further away from the black-hole hori-
zon jUj ¼ c and reaches spatial infinity at T ¼ Tm, in line
with the results of the last section. For T < Tm, the red
horizon has disappeared and the behavior is qualitatively

x

t

x

t

FIG. 6 (color online). Mass- and frequency-dependence of the
‘‘red horizon.’’ Mass (top): mred >mgreen >myellow. The heavier

the mode, the less distance it can escape the black hole before
being bounced back and reabsorbed. Frequency (bottom):
!red >!green >!yellow. The higher the frequency, the further

towards asymptotic Minkowski space the mode can escape. The
green curve in both graphics corresponds to the values used in
Fig. 4.

FIG. 7 (color online). Phase diagram of flow speed jUj versus
period T ¼ 2�=!. The purple horizontal dashed line is jUj ¼ c
and corresponds to the black-hole horizon. The red line shows
the critical speed jU�j, which defines the red horizon. The
vertical dashed green line corresponds to ! ¼ m, i.e. Tm ¼
2�=m. For T < Tm, everything still behaves qualitatively as in
the massless case. For T > Tm, a second turning point of zero
group velocity appears, the red horizon. Massive modes can only
exist for jUj � jU�j. The numbers in the phase diagram repre-
sent the number of roots (k’s) in each region and their signs; the
upper position for a sign means the root has positive (comoving)
frequency, the lower position means the root has negative
frequency.
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the same as the massless case: counter-propagating
modes have a positive lab-frame group velocity
d!=dk > 0 when jUj< c, but are dragged along by the
background flow (d!=dk < 0) when jUj> c. The only
blocking line (d!=dk ¼ 0) for T < Tm is therefore
jUj ¼ c. For T > Tm, however, a second blocking line
jUj ¼ jU�j is present, the ‘‘red horizon’’: for a given
period T (frequency !), massive modes can only exist
for jUj> jU�j, i.e. when the counter-flow is sufficiently
strong. For weaker background flows jUj< jU�j, their
existence is prohibited by the dispersion relation (1). As
the mode moves away from the horizon (jUj decreases
below c), it is blocked (d!=dk ¼ 0) at the red horizon
jUj ¼ jU�j, bounces back (jUj increases again), crosses
the black-hole horizon (jU�j ¼ c) and is absorbed by the
black hole.

The numbers on the phase diagram represent the number
of roots (values of k) and their signs; the positions of the
signs show whether the root is positive (comoving) fre-
quency (upper position) or negative frequency (lower
position). For example, a mode with T > Tm has 0 roots
for jUj< jU�j, one (double) root k > 0 for U ¼ U� and
two positive roots (k1; k2 > 0) for jU�j< jUj< c. When
jUj ! c�, k1 ! þ1, and reappears as k1 ! �1 when
jUj ! cþ. For jUj> c, there is therefore one negative and
one positive root. For T < Tm, there are 2 roots, one
positive (k1, counter-propagating) and one negative (k2,
copropagating), both with positive (comoving) frequency,
as long as jUj< c. For jUj> c, the k1 solution has con-
verted into a negative-frequency and negative-k root and
therefore k1, k2 < 0. As before, the transition from k1 > 0
to k1 < 0 goes through k1 ! �1 for jUj ! c�, i.e.: k1
effectively disappears for jUj ¼ c.

VI. HAWKING RADIATION

As was seen in the foregoing, the behavior of all massive
(counter-propagating) modes, including those with!<m,
is identical very close to the black-hole horizon: they all
experience the familiar infinite blue-shifting. This behavior
at the horizon is in fact a serious problem for the derivation
of the Hawking effect for real black holes, as it invalidates
the assumption of negligible back-reaction on the black
hole. Nevertheless it is now well-established that the in-
troduction of nonlinear dispersion at high wave numbers
does not destroy the Hawking mechanism (although see
[13,14] for some possible complications with respect to the
vacuum selection in the case of superluminal dispersion),
while it limits the blue-shifting at the horizon. This re-
moval of infinite (comoving) frequencies through disper-
sion is certainly present in all analogue systems and gives a
robust basis for investigations of Hawking radiation. As all
massive modes are not distinguished by their behavior at
the horizon, where the Hawking mechanism occurs, any
fields described by the Klein-Gordon equation will exhibit

the Hawking effect at all frequencies !, i.e. without a
cutoff given by the mass.
But the fact that a particular mode exhibits the Hawking

effect does not imply that it contributes to the evaporation
of the black hole. After being emitted from the black hole,
particles with !<m eventually turn around and fall
though the horizon, so they do not contribute to the evapo-
ration. But one could imagine capturing the !<m parti-
cles before they fall back into the black hole, in which case
they would contribute to the shrinking of the horizon. A
detector D placed sufficiently close to the black hole will
detect a significant amount of massive particles emitted by
the black hole that are not detected by a detector at infinity.
The same detector D would also register massive Hawking
particles falling back into the black hole.
For a Schwarzschild black hole, the position x� of the

red horizon is obtained from ðU�=cÞ2 ¼ RS=x
�, with RS the

Schwarzschild radius andU� given by Eq. (14). This leads,
for example, to x� 	 3RS for ! ¼ 0:8m, and x� 	 50RS

for ! ¼ 0:99m. The spectral resolution of a hypothetical
particle detector placed at a position xD will essentially be
determined by the fly-by time of the emitted mode: the
time between crossing the detector on its way out and its
disappearance behind the black-hole horizon, after having
bounced on the red horizon. To obtain a sufficient resolu-
tion, one would need a supermassive black hole, and/or
place the detector extremely close to the black-hole hori-
zon, where the mode is slowed down by the black hole’s
gravitational pull. In that region, all sorts of additional
astrophysical effects would probably put strong limits on
the detectability of the boomerang behavior. Although
these issues are not very different from the general prob-
lems of detecting (massless) Hawking radiation, it is clear
that such considerations are of theoretical interest only in
the astrophysical case.
However, for an analogue system, there is no issue with

the spectral resolution since the modes can perfectly well
be detected inside the horizon. For an analogue system in
which a field obeys the Klein-Gordon equation, the lack of
a mass cutoff in the emission of Hawking radiation is very
important, and we will dedicate the next section to it.
Explicit quantitative estimates for the detection rate W

of massive particles with kBTH � !<m (with TH the
usual Hawking temperature) can be obtained through
the semiclassical tunneling formalism [15,16]. This gives
the standard Hawking result for massless particles, modu-
lated by a factor which depends on the particle massm, the
differencem2 �!2, the distance xD to the detector, and the
black hole space-time profile UðxÞ. While the general
expression is rather involved, it strongly simplifies when
xD � xH, with xH the radius of the horizon. In that case,
one obtains the simple approximation

Wð!Þ / exp

�
� !

kBTH

�
exp

�
� 2xD

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 �!2

p �
(18)
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(in units such that ℏ ¼ 1, as before), with TH ¼
jdU=dxjx¼xH=2� the standard Hawking temperature.

Compared to the standard case, the probability that a
massive particle with !<m arrives at a distance xD
decreases exponentially with xD, as expected.

VII. ANALOGUE GRAVITY

The study of Hawking radiation in analogue-gravity
systems opens up possibilities that are excluded in astro-
physics. One can consider black- and white-hole horizons,
which both produce Hawking radiation, and indeed com-
binations of horizons that communicate with each other
(for example, the so-called black-hole laser [17]). One can
also perform measurements on both sides of a horizon, so
detection of both particles in a Hawking pair and measure-
ment of their correlation becomes possible.

The study of astrophysical black holes may lead to the
simplistic view that there is a lower frequency (energy)
threshold in the production of massive particles by hori-
zons. This in turn would lead to the view that an analogue
system where a field described by the Klein-Gordon equa-
tion experiences a horizon is a poor choice for observing
the Hawking effect. In reality the Hawking radiation pro-
duced by the horizon is in no way suppressed by the mass,
and such an analogue system is in this regard just as
promising a candidate as one in which the field obeys the
massless wave equation. The !<m particles would be
just as accessible to detection as the!>m particles. In the
case of a black-hole horizon the !<m particles end up
going into the ‘‘black hole,’’ whereas the !>m particles
propagate away from the other side of the horizon, but all
can be detected. For a white-hole horizon, what happens
depends on how the dispersion relation is modified at high
k in the particular analogue system. All real systems will be
dispersive at the high k values experienced by modes near
the horizon and instead of sticking at the white-hole hori-
zon the rays will drift away from the horizon on one side or
the other depending on whether the dispersion is super-
luminal or subluminal at high k. Again, there is no problem
in principle in detecting all the particles, for all !, in this
white-hole case.

One may wonder whether the boomerang effect will not
be mixed with the—possibly very complicated—disper-
sive high-k behavior near the horizon. Two elements
should be borne in mind. The first is that detailed studies
based on rather general (mainly ‘‘subluminal’’, see e.g. [8])
dispersion relations as well as for concrete systems with
massless waves (BECs, surface waves, etc.) have shown
that such potential ultraviolet problems do not spoil the
Hawking effect and a thermal spectrum can be recovered
under quite general conditions on the velocity profiles. For
BECs, for example, this is demonstrated starting from the
Bogoliubov–de Gennes equations [9], and the outcome can
safely be expected to be independent of the masslessness or
massiveness of the phonons. The second key point is that

the boomerang effect is detectable as long as the back-
ground flow velocity U is nonzero. In analogue systems,
this region can be extended to a distance far beyond the
immediate surroundings of the horizon, so that any
complicated high-k behavior has been completely smooth-
ened out.
It remains to identify analogue-gravity systems where

these ideas could be tested experimentally. In most ana-
logue systems that have been considered the waves obey
the massless wave equation at low wave numbers (with
modifications at high wave numbers). An exception is a
recent study of acoustic waves in a rotating ion ring [18,19]
where the discreteness of the ions leads to a dispersion
relation at low k that is not of the massless form, but these
waves are not Klein-Gordon waves. We give three ex-
amples of systems where waves obey the Klein-Gordon
equation and where the creation of horizons for the waves
is possible.
Bose-Einstein condensates (BECs) are among the most

discussed systems for analogue gravity. Theoretically, they
provide the advantage of being well-studied and rather
well-understood, while experimentally they are clean and
quite flexible. Black-hole configurations in a BEC were
recently realized for the first time [20]. The phonons that
are obtained in standard BECs are massless, but in [21] a
scheme was described for producing a ‘‘massive’’ phonon
in a two-component BEC. In the presence of a horizon
created by a sub- to super-sonic flow these massive pho-
nons should then behave as described above (with an
appropriate modification at high k).
The second example is Langmuir waves in a moving

plasma [22]. These waves have a dispersion relation of
the form ð!�UkÞ2 ¼ !2

p þ!2
pR

2
Dk

2, with!p the plasma

frequency and RD the Debye radius. This is the Klein-
Gordon dispersion relation with the cutoff frequency !p

playing the role of mass. One obvious undesirable feature
in this system is Landau damping [22] of the waves, but all
analogue-gravity systems present their own challenges.
The third example is from barotropic waves [23] in fluid

mechanics. Barotropic waves are an assortment of waves in
fluids with rotation, one type of which, known as inertia-
gravity or Poincaré waves, has the Klein-Gordon disper-
sion relation [23] !2 ¼ f2 þ ghk2, where f is the Coriolis
parameter, g the gravitational acceleration and h is the
fluid depth. As in the previous examples, a horizon can
be created by a fluid flow.
The presence of a lower frequency cutoff in the flat (but

not curved) space-time dispersion relation is the feature of
Klein-Gordon waves that leads to the interesting behavior
we have discussed in this paper. This lower cutoff is not
unique to Klein-Gordon waves and we note another pos-
sible analogue-gravity system with waves that exhibit a
lower frequency cutoff, namely, one based on spin waves.
Spin waves [24] are propagating perturbations of the order-
ing in magnetic systems. These waves can have a variety of
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dispersion relations, depending on their particular type
and propagation direction. The key points relevant to our
present discussion are the following. First, several of these
dispersion relations have the form ! ¼ �ðA1 þ A2k

2Þ,
where A1, A2 > 0; there is therefore a lower frequency
cutoff A1. Second, a Doppler shift of spin waves can be
induced by the application of an electric current [25], an
effect that was demonstrated a few years ago [26]. In the
presence of an electric current the dispersion relation be-
comes !�Uk ¼ �ðA1 þ A2k

2Þ, with a Doppler-shifted
frequency !�Uk, where U is proportional to the current
density [25]. One can therefore envisage creating horizons
for spin waves using an electric current density that varies
along the length of the sample due to a changing transverse
area. Further details of this proposal will be given
elsewhere.

VIII. CONCLUSIONS

The Hawking effect for massive Klein-Gordon modes
does not exhibit a lower frequency cutoff given by the
mass. This does not contradict the obvious fact that black
holes cannot emit massive particles with !>m to asymp-
totic infinity. We have shown in detail that massive modes
with !<m display a boomerang behavior: after being
emitted from the horizon they eventually turn around and
are dragged back into the black hole. This bouncing, or

blocking, behavior is a familiar feature in analogue gravity
in the context of waves with subluminal or superluminal
dispersion (or a combination of both [12]) at high wave
numbers. In the Klein-Gordon case the interesting disper-
sive effects are at low wave numbers, but the same tech-
niques of analysis reveal the behavior.
The lesson that the Hawking effect for Klein-Gordon

modes is not suppressed compared to the massless case is
an important one for analogue gravity. Hawking radiation
of Klein-Gordon modes in an analogue system is just as
amenable to experimental detection as radiation of mass-
less modes. Analogue-gravity systems with Klein-Gordon
waves are possible using two-component BECs [21],
Langmuir waves in plasmas and barotropic waves in fluid
mechanics.
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