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Abstract. Surface waves on a stationary flow of water are considered in a
linear model that includes the surface tension of the fluid. The resulting gravity-
capillary waves experience a rich array of horizon effects when propagating
against the flow. In some cases, three horizons (points where the group velocity
of the wave reverses) exist for waves with a single laboratory frequency. Some
of these effects are familiar in fluid mechanics under the name of wave blocking,
but other aspects, in particular waves with negative co-moving frequency and
the Hawking effect, were overlooked until surface waves were investigated
as examples of analogue gravity (Schützhold R and Unruh W G 2002 Phys.
Rev. D 66 044019). A comprehensive presentation of the various horizon
effects for gravity-capillary waves is given, with emphasis on the deep water/
short wavelength case kh � 1, where many analytical results can be derived.
A similarity of the state space of the waves to that of a thermodynamic system is
pointed out.
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1. Introduction

The interest in black-hole analogues has mainly been driven by the intriguing possibility
of observing Hawking radiation in the laboratory [1]–[6]. In addition to the experimental
challenges, this pursuit has important theory implications because of the well-known weakness
in the derivation of the Hawking effect for real black holes [7, 8]. Hawking’s semi-classical
calculation [9] is based on a consideration of fields that are assumed to have no appreciable
gravitational effect compared to the black hole, but the derivation contradicts this assumption,
because the fields attain arbitrarily high frequencies (and therefore energies) at the horizon. This
so-called trans-Planckian problem reveals the lack of any proper understanding of quantum-
gravitational effects. Unfortunately, the question of whether black holes really radiate does not
seem to be amenable to experimental investigation, because such radiation would be completely
swamped by the cosmic microwave background. In black-hole analogues, the trans-Planckian
problem is avoided by dispersion that limits the blue-shifting of waves at horizons [10].
The Hawking effect has been found to persist even in the presence of dispersion [10]–[17],
although, in general, one must resort to numerical simulations to verify this. The lack of a good
understanding of the Hawking effect with arbitrary dispersion is an important and presumably
solvable problem, whereas a proper understanding of the Hawking effect in real black holes
requires unknown physics to deal with the infinite blue-shifting. Analogue systems therefore
provide the opportunity to understand the Hawking effect using known physics and to verify it
experimentally. Neither of these tasks can be achieved with real black holes.

The introduction of dispersion into the Hawking effect opens up a variety of new
possibilities. Indeed, one of the lessons of analogue systems is that the physics of horizons,
including the Hawking effect, has a breadth and richness that is not immediately apparent
from the case of real black holes. One can consider white-hole and black-hole horizons
[6, 18], both of which give rise to the Hawking effect; horizons allow the blue-shifting and red-
shifting of probe waves [6]; depending on the dispersion, the probe waves can bounce back at
horizons, or go straight through, or bounce back and forth a number of times (see below); and
two horizons can communicate leading to runaway quantum Hawking radiation or a classical
instability [5], [18]–[20].

Perhaps the least exotic black-hole analogue that has been proposed is that of surface waves
on a moving fluid. Schützhold and Unruh [18] showed that long-wavelength surface waves
in a shallow moving fluid obey the Klein–Gordon equation in a curved space-time geometry.
By varying the flow speed so that it exceeds the wave group velocity in some region, one
produces a horizon. Close to the horizon, the long-wavelength assumption breaks down and
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Figure 1. Experimental white-hole horizon in hydrodynamics. The surface
waves propagate against the flow up to the point where the flow speed matches
the group velocity of the waves. The flow speed is higher on the left than on the
right because of the slope on the bottom of the tank.

the detailed behaviour is governed by the dispersion; the wave evolution is no longer described
by an effective space-time metric and there is therefore no trans-Planckian problem of infinite
blue-shifting. Further results for surface waves from an analogue-gravity perspective were given
in [21]. Recently, we performed experiments to investigate the behaviour of surface waves at a
white-hole horizon, using water waves in a wave tank with a counter-flow [22]. The speed of
the counter-flow was varied along the tank by the presence of a sloping region on the bottom.
Figure 1 shows how waves propagating against the flow are blocked at the point where the
counter-current reaches the group velocity of the wave. This blocking line is the white-hole
horizon. A video of the incoming wave was used to produce the space-time diagram in figure 2
(note that the directions of the flow and the wave are reversed in the plot of figure 2 compared to
figure 1). The linear features with positive slope in the space-time diagram are the evolution of
the wave crests and troughs in time—the world-lines of the crests and troughs. The inverse dx/dt
of the slope of the world-lines gives the speed of the crests and troughs, the phase velocity ω/k
of the wave since the phase is

∫
(kdx − ωdt). The lines curve upwards as the wave reaches the

white-hole horizon, showing a decrease in the phase velocity. The wavelength in the laboratory
is revealed by drawing a horizontal line in the diagram and measuring the distance between two
crests. Because of the curving upward of the crest world-lines, the wavelength is seen to decrease
as the horizon is approached. This is the characteristic wavelength-shortening (‘blue-shifting’)
of waves at a white-hole horizon, also observed in an optical analogue [6]. The inset in figure 2
shows the behaviour of rays at a white-hole horizon where there is no dispersion. The rays stick
at the horizon, which corresponds to an infinite blue-shifting of the waves (the trans-Planckian
problem). It is the dispersion of the surface waves that limits the amount of blue-shifting at the
horizon. In this paper, we will discuss some of the rich set of possible behaviours.

Not surprisingly, the blocking of waves by a counter-flow that exceeds the wave group
velocity is a phenomenon that is well known in the fluid-mechanics community [23, 25, 29,
30, 35]. The blue-shifting of waves at the blocking line (white-hole horizon) is also well known
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Figure 2. Space-time diagram of a plane wave encountering a white-hole
horizon. In this diagram, the wave propagates to the right on a flow moving to
the left. Grey values denote the water height and show clearly the world-lines of
the crests and troughs. The green dotted line shows the initial slope of the world-
line of the incoming wave, which is inversely proportional to the phase velocity.
The red line is the world-line of a crest, the slope of which increases as the wave
reaches the horizon. The phase velocity thus decreases at the horizon, leading to
a decrease in the wavelength, a blue-shifting that is limited by dispersion. The
inset shows the behaviour of rays at a non-dispersive white-hole horizon, where
there would be infinite blue-shifting of waves (rays originating on both sides of
the horizon are shown).

and has been investigated experimentally [27]–[29]. There is, however, another possible process
in the interaction of a wave with a counter-flow—one that does not seem to have been considered
by the fluid-mechanics community, even though it is a possibility clearly visible in the dispersion
relation [18, 22]. This process is the Hawking effect. In a stationary flow, where the flow speed
at each point in the tank is constant in time but varies from point to point, the frequency in the
laboratory frame of a surface wave on the flow is conserved. As we have seen, the wavelength
in the laboratory is not conserved, and so a white-hole horizon converts the wavelength of a
wave propagating against the flow to a different wavelength while conserving its frequency
in the laboratory. Figure 2 is an example of such a wave. It is right-moving against the flow
(ingoing against the flow) with positive (angular) frequency ω and positive wave number k, and
the horizon increases k while keeping ω fixed. An important quantity is the frequency of the
wave in a frame co-moving with the flow. This co-moving frequency is not conserved, but the
ingoing wave and the blue-shifted wave with higher k both have positive co-moving frequencies
[18, 22]. It turns out that there is often a solution to the dispersion relation for the fixed positive
input frequency ω that has a negative k and a negative co-moving frequency [18, 22]. The
laboratory frequency ω of the input wave must be conserved in the wave evolution, but, when
there is a wave with negative co-moving frequency at same value of ω, there exists the possibility
that it could be generated in the interaction of the input wave with the counter-flow. These
waves with negative co-moving frequency would be produced in addition to the blue-shifted
waves with positive co-moving frequency. This process is the Hawking effect, which is at
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root a classical effect, although with extraordinary quantum implications [9, 38]. The strangest
feature of the Hawking effect is that it is an amplification of the ingoing wave—an extraction of
energy from the flow (or from whatever background creates the horizon). The famous quantum
Hawking radiation is a rather straightforward consequence of the classical Hawking effect when
the fields underlying the waves are quantized (the role of input waves is then played by the
quantum vacuum, and the energy extraction in the Hawking process allows the spontaneous
creation of field quanta) [9].

In our experiments described above [22], we observed indications of waves with negative
co-moving frequency. Numerical simulations indicated that the Hawking effect would be
unobservable in the regimes covered in the experiments [22], but it is not clear how well the
wave evolution was described by the theoretical model used in the simulations. It appears
that our paper was the first experimental search for the Hawking effect with surface waves,
and further experiments are needed. We hope through this paper to increase awareness of the
Hawking effect among researchers in fluid mechanics by showing how it has been overlooked in
the existing literature on wave blocking. Complementary to this, we hope to show those familiar
with horizon physics some of the rich horizon effects that occur in models of wave blocking that
are used in fluid mechanics. Such surprising connections between apparently disparate areas of
physics (and engineering) are often a source of inspiration to both sides.

It is important to stress that the model of surface waves considered in this paper is a
linear one: the dynamics are given by a linear wave equation, but with a nonlinear dispersion
relation. As is well known, surface waves behave nonlinearly if the wave amplitude is large
enough, and this presents a potential problem since the shortening of the wavelength at a
horizon necessarily leads to an increase in the wave amplitude. The limiting of blue-shifting
by dispersion also limits the amplitude increase at blocking lines and, for the linear model to
be applicable, it is important that the wave amplitude doesn’t get too large. The maximum
amplitude attained during the interaction with a counter-flow can to some extent be controlled
through the amplitude of the incident wave, and dissipation (see next paragraph) also helps to
limit the amplitude. The interaction of nonlinear waves with a counter-flow is a highly complex
process that is not discussed here (see for example [31]).

Also neglected in the model used below is the viscosity of the fluid, and this limits
the accuracy of the results when wavelengths are blue-shifted down to very small (capillary)
wavelengths since viscosity quickly damps such waves. However, it is easy to make allowances
for this latter drawback of the model by bearing in mind the limited propagation length of
capillary waves.

2. Surface waves on a stationary flow

The subjects of black holes and water waves have a historical connection through the figure of
Pierre–Simon de Laplace. In his ‘Exposition du Système du Monde’ in 1796, Laplace famously
introduced the term étoile sombre (dark star) to denote an object whose gravitational field is
strong enough to prevent light from escaping (the same concept had been described in 1783 by
the Reverend John Michell in a letter to Cavendish) [32]. Laplace is also well known for having
derived (in 1775) a dispersion relation for surface waves on water [33]. When the water has a
background flow (which does not vary with depth) and the effect of surface tension is included,
the dispersion relation takes the form widely used in fluid mechanics to describe waves on
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moving water [23, 24, 34, 35],

(ω − Uk)2
=

(
gk +

γ

ρ
k3

)
tanh(kh). (1)

Here, ω is the (angular) frequency of the wave in the laboratory frame and k the wave-number.
U is the speed of the flow, h the depth of the fluid, g the gravitational constant, ρ the fluid density
and γ the surface tension. For water, ρ = 1000 kg m −3 and γ = 0.073 N m−1. Equation (1) is
a one-dimensional dispersion relation suitable for water-tank experiments. When the flow is
stationary (U independent of time, but gradually varying in space), ω is a constant but k varies
with spatial position x . Waves described by (1) are a consequence of gravity (g) and surface
tension (γ ) and are called gravity-capillary waves. For small k, the gravity term dominates,
which we call the gravity regime, whereas for large k, surface tension dominates, giving the
capillary regime. The pure-gravity case corresponds to γ = 0.

The quantity ω − Uk is the frequency in a frame co-moving with the fluid. Hence the
positive, respectively negative, square roots of (1),

ω − Uk = ±

√(
gk +

γ

ρ
k3

)
tanh(kh), (2)

correspond to positive, respectively negative, co-moving frequencies. As described in the
Introduction, the Hawking effect is the generation of a wave on the negative branch of (2)
from a wave on the positive branch, through interaction with a counter-flow. It is a remarkable
fact that in the extensive fluid-mechanics literature on the waves (1), including the pure-gravity
case γ = 0, there seems never to have been any consideration of the possibility of conversion of
waves from the positive to the negative branch of (2) through the blocking effect [23], [25]–[30],
[34]–[37], [39]. If such a conversion process had been investigated, the Hawking effect would
presumably have been (re-)discovered in fluid mechanics.

Solutions of the dispersion relation (1) are usually represented graphically. We obtain
from (2)

ω = Uk ±

√(
gk +

γ

ρ
k3

)
tanh(kh). (3)

Figure 3 plots both branches of the right-hand side of (3) as functions of k, for a fixed value of
U < 0. Panel (a) shows the pure-gravity case (γ = 0) and (b) shows the full dispersion relation
with surface tension included. The positive branch of (3), corresponding to positive co-moving
frequency, is shown in green, while the negative branch, corresponding to negative co-moving
frequency, is shown in blue. The intersection of these curves with a given horizontal line, such
as the red line in the figures, gives the possible waves for the frequency ω given by that line. In
a stationary flow, ω is conserved but the plots on the right-hand side of (3) change with spatial
position as U (x) changes, and one can trace the evolution of a given solution by following
its intersection point with the horizontal line of fixed ω. As one traces the evolution of the
intersection point, the changing group velocity dω/dk is the slope of the tangent to the curve at
the point of intersection with the horizontal line.

In the pure-gravity case (figure 3(a)), there are at most four real roots of the dispersion
relation (kI, kB, kR and kH). The solution kI is a right-moving wave in the laboratory, having
positive phase and group velocities, propagating against a left-moving counter-flow U < 0. If
the flow speed |U (x)| increases as the wave moves to the right (U becomes more negative), the
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Figure 3. Dispersion relation for surface waves propagating on a water flow
with a given velocity U < 0. (a) shows the pure gravity case (γ = 0) and (b)
shows the gravity-capillary case. The green curves are the positive branch of
the right-hand side of (3) (positive co-moving frequency) and the blue curves
are the negative branch (negative co-moving frequency). Intersections of these
curves with the horizontal red line (value of ω) show possible waves at ω. If
U becomes more negative, the green and blue curves rotate clockwise about
the origin. Local maxima and minima of the green and blue curves show the
possibility of blocking waves by means of appropriate velocity profiles U (x)

(see figure 4). A water depth h = 0.4 m is assumed.

green and blue curves tip over clockwise about the origin (as in figure 4), and so the root kI

increases—the wave is blue-shifted. When the wave reaches a point where the flow speed has
increased to make the roots kI and kB coalesce at a local maximum of the green curve, the group
velocity of the wave is zero—it has been blocked at a white-hole horizon. The wave has been
stopped by a negative ‘group acceleration’ that is still non-zero at the blocking point, so the
group velocity decreases to negative values. The wave moves back to the left in the laboratory
on the kB root of the dispersion relation, back into the region where the counter-flow is slower
than the blocking speed and where the wave previously had wave number kI. The ingoing wave
kI has thus been blue-shifted to kB by the white-hole horizon. The blue-shifted wave kB has
positive phase velocity, so its crests move to the right in the laboratory, but it has negative group
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Figure 4. Graphical solution and numerical ray solution for gravity-capillary
waves on a water counter-flow. The green/blue curves refer to positive/negative
co-moving frequency. Four values of the velocity profile U (x) < 0 are shown
in the dispersion plots (upper), and the x-positions where the profile takes
these four values are shown in the ray solutions (lower). The values are
(in m s−1) U1 = −0.17, U2 = −0.2035, U3 = −0.2536 and U4 = −0.275. We
use a hyperbolic tangent function tanh ax to describe the variation in the velocity
profile, with a typical length a = 0.5 m. The conserved frequency ω of the waves
(red horizontal line in the dispersion plots) corresponds to a period T = 0.7 s.
A water depth h = 0.4 m is assumed.

velocity. The third real root of the dispersion relation with positive co-moving frequency (green
curve) in figure 3(a) is kR. This is simply a wave propagating in the same direction as the flow,
to the left with negative phase and group velocities. The solution kR is rather trivial and is of no
interest for horizon effects.

The root kH in figure 3(a) has negative co-moving frequency (blue curve) and is of great
interest for horizon effects. The conversion of some of the input wave kI to kH is the Hawking
effect. Since it has a negative wave number, the wave kH has a negative phase velocity in the
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laboratory. Its crests move backwards relative to the direction of the ingoing wave, in contrast
to kI and kB, which both have positive phase velocity. It is essential to understand that the
three waves kI, kB and kH are all propagating to the right relative to the fluid, even though in
the laboratory kH has a phase velocity pointing left and both kB and kH have a group velocity
pointing left (kR is the root corresponding to a wave moving to the left relative to the fluid).
Unlike the blue-shifting of kI to kB, the existence of conversion from kI to kH cannot be deduced
from dispersion plots, which only reveal it as a possibility. The amount of conversion of kI to kH

depends on the details of the dispersion and the velocity profile U (x). In simple cases involving
limited dispersion, the Hawking effect is determined by the slope dU (x)/dx of U at the horizon
(this slope is the analogue of the surface gravity of a black hole, the acceleration due to gravity
at the horizon). However, for general dispersion and velocity profiles, no analytical formula for
the size of the effect has been found so one must resort to numerical simulations of the wave
evolution. One aspect of the challenge to find a good intuitive understanding of the Hawking
effect is apparent from the description of the horizon given above: this was taken as the point
where the flow speed matched the group velocity of the blue-shifting wave. However, the phase
velocity of this wave is greater than its group velocity, and so one can have a group-velocity
horizon but no phase-velocity horizon. On the other hand, one can have both a group- and
a phase-velocity horizon, with, in principle, an arbitrary distance between these two horizons
and a completely different value of dU (x)/dx at each horizon. The size of the Hawking effect
is influenced by these and other factors.4 There is also the further possibility of having the
maximum flow speed close to but less than that required for a group-velocity horizon. In this
case, one would expect some wave tunnelling into the blue-shifted root kB, and perhaps also into
kH (tunnelling of surface waves has been studied in [40]). Numerical simulations indicate that
this method of generating kH without a group-velocity horizon is mathematically possible for a
steep-enough velocity profile, but it should not be possible in practice [22]. In the experiments
reported in [22], waves with negative phase velocity were observed even in the absence of a
white-hole group-velocity horizon, but, as stated in the introduction, the origin of those waves
is not clear.

The conversion of kI to kB discussed above is well known in fluid mechanics, under the
name of wave blocking [23], [25]–[30], [34]–[37], [39]. The superposition of the kI and kB waves
has been shown to be describable by an Airy interference pattern [26, 36, 37, 41]. In contrast, the
root kH in figure 3(a) has been largely neglected by the fluid-mechanics community. Although
the graphical representation of the dispersion relation is standard in fluid mechanics, very few
authors [25], [42]–[44] plot the negative-k part, in either the pure-gravity or gravity-capillary
cases, and the conversion of kI to kH appears not to have been considered.

Turning to the full gravity-capillary case, figure 3(b) shows (for fixed U < 0) how the
surface tension γ changes the dispersion relation at large wave numbers compared to the pure-
gravity case in figure 3(a). For the value of U plotted, the positive co-moving frequency curve
(green) has a local minimum as well as a local maximum, and this is also the case for the
negative co-moving frequency curve (blue), although the local minimum of the latter curve
always occurs at negative laboratory frequency ω. If U becomes more negative, the curves
tip over clockwise about the origin, so that for a larger counter-flow speed there exist roots
with negative co-moving frequencies at the ω shown by the red line. Each local maximum or
minimum of the green and blue curves reveals the possibility of reversing the group velocity of

4 An extension of the standard analytical results to the dispersive case was given in [17] but only for two specific
velocity profiles, both of which gave a group- and a phase-velocity horizon.
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a wave with an appropriate velocity profile, as in the discussion of the local maximum in the
pure-gravity case (figure 3(a)). The local maximum of the green curve in figure 3(b) allows the
wave blocking and blue shifting of an incident right-moving wave, as in the pure-gravity case.
We refer to this blocking line as the white horizon (from white hole). However, after the white
horizon has reversed the group velocity of the incident wave so that it now moves to the left, this
blue-shifting wave encounters another blocking line because of the local minimum of the green
curve. We refer to this second blocking line for the blue-shifting wave as the blue horizon. At
the blue horizon, the group velocity reverses once more to become positive, so the wave moves
to the right again towards the white horizon. This time the (still blue-shifting) wave goes right
through the white horizon, and so overall the incident wave undergoes a double bounce. Figure 4
shows the graphical solution of the dispersion relation at four values |U1| < |U2| < |U3| < |U4|

of a velocity profile U (x) < 0, and also a numerical solution of the ray equations for the incident
right-moving wave (green curve in the lower figure). The x-positions where the velocity profile
takes the four values used in the dispersion plots are shown in the ray plot. Rays move at
the group velocity, so the wave blocking is clear from the ray plots. Also shown is the ray
solution for the wave with negative co-moving frequency (blue curve). This wave is initially left-
moving in the laboratory, but its group velocity is reversed at a blocking line we refer to as the
negative horizon (this horizon does not exist in the pure-gravity case—see [22]). Comparing the
dispersion and ray plots in figure 4 (and ignoring the co-propagating wave kR discussed above),
one can see how the increasing counter-flow speed as x increases gives, successively, one
k root in the profile where |U | < |U2|, three roots in the region where U lies between U2 and
U3, five roots in the region where U lies between U3 and U4, and three roots in the region where
|U | > |U4|. One can also see how these roots relate to the ray behaviour. (See [22] for ray plots
in the pure-gravity case.)

Figure 5 shows an example where the frequency ω and counter-flow profile U (x) < 0 are
such that only a wave with positive co-moving frequency exists. The wave again displays the
double-bouncing behaviour. Figure 6 shows a numerical solution for a wave packet centred on
the ray in figure 5. This simulation was obtained by solving the scalar wave equation describing
the surface wave on the counter-flow. It was shown by Schützhold and Unruh [18] that this
equation takes the form of the Klein–Gordon equation in a curved space-time with added higher-
order dispersion, in this case the dispersion (1) of gravity-capillary waves,

(∂t + ∂xU )(∂t + U∂x)φ = i

(
g∂x −

γ

ρ
∂3

x

)
tanh(−ih∂x) φ. (4)

The method of numerically solving equations of the form (4), for essentially arbitrary
dispersion, is described in [10]. Further examples of this kind of numerical solution for surface
waves appear in [18, 22]. In the wave packet simulation in figure 6, the continuous blue-shifting
that accompanies the double bounce is apparent. Because of the spread of frequencies in the
wave packet, there is some leakage of the initial wave through the white horizon (first bounce),
as well as spreading and separation of frequency components at the blue horizon (second
bounce). For extensive numerical simulations of gravity-capillary waves in the presence of a
current, see [44, 45].

In practice, the blue-shifting of incident gravity waves into the capillary regime, as in
figure 6, will be limited by viscosity, which is not included in the model we have been
discussing. As a consequence, the highly blue-shifted waves produced at the blue horizon
will dissipate rapidly. An experimental investigation into these effects was first performed by
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Figure 5. Graphical solution and numerical ray solution for gravity-
capillary wave with positive co-moving frequency. The conserved frequency
ω corresponds to a period T = 0.47 s. For this frequency there is no wave
with negative co-moving frequency in the range |U1| < |U2| < |U3| of counter-
flow speeds used. The three values of the flow velocity shown are (in m s−1)
U1 = −0.1804, U2 = −0.1876 and U3 = −0.1991. A water depth h = 0.4 m is
assumed.

Badulin et al [34]. These authors observed the initial blocking of waves in the gravity regime
(white horizon) and the subsequent conversion into waves in the capillary regime (blue horizon),
which then propagated through the original blocking line and vanished through viscous
damping [34]. Gravity-capillary waves on a counter-flow have also been studied experimentally
by Klinke and Long [46], who produced space-time diagrams of the wave evolution. Trulsen
and Mei [44, 45] give a theoretical treatment that includes numerical simulations. A recent
theoretical survey is given by Huang [24].

We have so far discussed only certain features of the dispersion relation (1). In the next
section, we classify in more detail how the presence or absence of the various horizons, and
their positions, depend on the conserved frequency ω and velocity profile U (x).
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Figure 6. Wave packet simulation. The packet is centred on the ray in figure 5.

3. Results for wavelengths less than the water depth

The influence of the water depth h in the dispersion relation (1) disappears when |k|h � 1, so
that tanh kh ≈ ±1 (depending on the sign of k). This is the case with wavelengths that are short
compared with the water depth and it gives the polynomial dispersion relation

(ω − Uk)2
= ±

(
gk +

γ

ρ
k3

)
(+ for k > 0, −for k < 0), (5)
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which is easier to handle analytically than the original (1). The waves considered in figures 3–6
are in fact very well described by the deep water/short wavelength dispersion relation (5), as
were the waves studied in the experiments [22] and [34].

At the blocking lines or horizons discussed in the last section, the group velocity vanishes
and the dispersion curve ω(k) has a local extremum. Three possible horizons for gravity-
capillary waves were identified: the white, blue and negative horizons in figure 3(b). At
each horizon, two real roots of the dispersion relation coalesce into one double root and
then disappear: in the terminology of dynamical systems, this is a saddle-node or tangent
bifurcation [41]. The order parameter of the bifurcation is the wave number, whereas the two
control parameters are the velocity U (the ‘external field’) and the frequency ω (the ‘internal
parameter’). Following the approach in [41], we find the horizons by looking for a double root
k2 of the cubic dispersion relation (5),

(k − k1)(k − k2)
2
= 0, (6)

where k1 is the remaining simple root. Comparing coefficients of k in (5) and (6), we obtain
expressions for k2 and k1, as follows. The comparison of coefficients gives three equations for
the two unknowns k1 and k2. Two of these equations are solved for k1 and k2, and the third
equation is then a constraint relating k1 to k2. In the case of positive wave numbers (plus sign
in (5)), this procedure gives

k2 =
ρU 2

3γ

(
1 ±

√
1 −

3γ

ρU 4
(g + 2ωU )

)
,

(positive wave numbers)

k1 =
ρU 2

3γ

(
1 ∓ 2

√
1 −

3γ

ρU 4
(g + 2ωU )

)
,

(7)

with the constraint

k1k2
2 =

ρω2

γ
(positive wave numbers). (8)

The constraint (8), for both sign possibilities in (7), leads to

ω

[
U 5 +

gU 4

4ω
+

γω2U 3

ρg
−

15γωU 2

2ρ
−

6gγU

ρ
−

γ g2

ρω
−

27γ 2ω3

4ρ2 g

]
= 0

[
positive wave

numbers

]
. (9)

For negative wave numbers (minus sign in (5)), k2 and k1 are

k2 = −
ρU 2

3γ

(
1 ±

√
1 −

3γ

ρU 4
(g − 2ωU )

)
(negative wave numbers),

k1 = −
ρU 2

3γ

(
1 ∓ 2

√
1 −

3γ

ρU 4
(g − 2ωU )

) (10)

with the constraint

k1k2
2 = −

ρω2

γ
(negative wave numbers), (11)
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which leads to

ω

[
U 5

−
gU 4

4ω
+
γω2U 3

ρg
+

15γωU 2

2ρ
−

6gγU

ρ
+

γ g2

ρω
+

27γ 2ω3

4ρ2 g

]
= 0

[
negative wave

numbers

]
. (12)

The significance of the constraints (9) and (12) is clear from figure 3(b). With a particular
choice of U , local extrema in the dispersion plot (corresponding to double roots k2) occur at
values of ω determined by this choice of U . For a given U , the constraint (9) or (12) is a quartic
in ω whose real roots give all the frequencies at which a blocking line (horizon) occurs for this
U . Alternatively, upon fixing ω, the constraint gives a quintic in U whose real roots are all the
flow velocities that give a horizon at this frequency.

As in the previous section, we consider only positive ω and negative U , whereas k can
be positive or negative (this gives no restriction in the horizon effects). The white horizon
in figure 3(b) occurs at a value of k low enough for the influence of the surface tension γ

in (5) to be very small. A very good approximation for the white horizon, which is exact in
the pure-gravity case, is therefore obtained by putting γ = 0. Neglecting γ , the constraint (9)
gives

ωU 4
(

U +
g

4ω

)
' 0. (13)

Note that the approximation (13) is also obtained in the large U limit, so for large U it becomes
the exact constraint at the white horizon for gravity-capillary waves. From (13), we recover the
relation between U and ω that gives the blocking of gravity waves at a white-hole horizon [41],

Ug = −
g

4ω
= −

gT

8π
, (14)

where T is the period. The corresponding value of the double root k2 is obtained from the
γ → 0 limit of (7). The lower sign in the first of (7) gives the only finite expression,

k2 = kg =
4ω2

g
=

g

4U 2
g

. (15)

Equations (14) and (15) show the exact relationship between the frequency, wave number
and counter-flow speed at the white horizon for pure-gravity waves. Note from (14) that
the flow speed at the white horizon is proportional to the conserved period of the blocked
wave. The straight line |Ug| versus T is shown in red in figure 7. Superimposed on that red
line is a black curve that shows the exact relationship between flow speed and period for
gravity-capillary waves. In line with the comments above, the red line agrees very well with
the gravity-capillary case, except for small |U | and therefore small T . The striking feature of
the gravity-capillary curve is that it ends at the point labelled (|Uc|, Tc). The white horizon
thus does not exist for periods T that are below a critical value Tc, or for counter-flows that do
not reach a critical speed |Uc|. The existence of this threshold can be seen from the dispersion
plots in figure 4. For flow velocity U1 there is no local maximum of the green curve, and so
no frequency ω experiences a white horizon at this flow velocity. In contrast, the other flow
velocities plotted in the figure all give a local maximum of the green curve and therefore
a white horizon for the frequency at this maximum. Similarly, if the period T is too small
(frequency ω too large), the horizontal red line in figure 4 will not intersect a local maximum
in the dispersion plot for any U , and so there can be no white horizon for such periods.

Let us look in more detail at the critical values (|Uc|, Tc). Figure 8 graphically shows the
occurrence of the threshold for the white horizon. We see that the disappearance of a local
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Figure 7. The flow speeds |U | at which the white, blue and negative horizons
occur, as a function of the wave period T (black curves). The curve lying on
or close to the straight red line is the white horizon, the red line showing the
pure-gravity white horizon. The curve approaching the asymptote |U | = |Uγ |

from below is the blue horizon, and the curve approaching this from above is the
negative horizon.

maximum in the green curve, as |U | decreases, is accompanied by the disappearance of the
local minimum, and at the critical value Uc the two local extrema coalesce to form a point of
inflection at frequency ωc. This shows that (|Uc|, Tc) is also the threshold for the occurrence
of the blue horizon, which requires a local minimum in the green curve. At (|Uc|, Tc), the two
double roots k2 in (7) (white and blue horizons) coincide, and in fact the same value is taken
by the simple root k1, as can also be seen in figure 8. The values (|Uc|, Tc) can be obtained
by solving for the point of inflection ∂ω

∂k =
∂2ω

∂k2 = 0 in the dispersion relation (5) (k > 0). These
two equations can be solved for Uc and the critical wave number kc, and ωc then follows from
the dispersion relation. Alternatively, the point of inflection is found by demanding that the
square-root expression in (7) vanishes so that all k2 and k1 coincide. The result is

Tc = 2π(3 + 2
√

3)3/4

(
γ

ρg3

)1/4

= 0.425 s (16)

and

Uc = −

√
3

(3 + 2
√

3)1/4

(
γ g

ρ

)1/4

= −0.178 m s−1, (17)

with the wave number

kc =
1

(3 + 2
√

3)1/2

(
ρg

γ

)1/2

= 144 m−1. (18)

In using the method (6) of searching for the system parameters at horizons, we noted that
they correspond to saddle-node or tangent bifurcations in dynamical-systems theory [41].
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Figure 8. Dispersion plots and ray solutions for a wave with period Tc = 2π/ωc.
The wave with positive co-moving frequency occurs at a point of inflection when
U = Uc. This means that the corresponding ray (green) has a group velocity that
slows to zero when |U | increases to |Uc|. The group velocity does not reverse,
however, and the ray resumes its propagation into regions of higher |U |.

The cusp (|Uc|, Tc) in the |U | versus T diagram (figure 7) is the point where two saddle-node
lines (horizons) intersect. In the terminology of dynamical systems, this corresponds to a so-
called pitchfork bifurcation [47].

Since (|Uc|, Tc) is also a threshold for the existence of the blue horizon, the curve in the |U |

versus T diagram (figure 7) relating the period to the flow speed at the blue horizon must also
end at (|Uc|, Tc). This curve is also shown in figure 7 and it is seen to approach an asymptotic
value, labelled Uγ , as T → ∞. This is because T → ∞ means ω → 0, and the dispersion plot
in figure 9 shows that the local minimum giving the blue horizon occurs at ω = 0 for a finite
non-zero U that we call Uγ . We find the flow velocity Uγ as follows. The constraint (9) relates
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Figure 9. The dispersion plot when the counter-flow velocity is such that the
local minimum of the green curve and the local maximum of the blue curve lie
on the k-axis (ω = 0, T = ∞). This counter-flow velocity is given by (20) and
has the value Uγ = −0.231 m s−1.

the values of U and ω at all horizons (double roots of the dispersion relation) for waves with
positive k. Hence, by taking ω → 0 in (9), we obtain Uγ . This limit of (9) gives

gU 4

4
−

γ g2

ρ
= 0, (19)

so

Uγ = −
√

2

(
γ g

ρ

)1/4

= −0.231 m s−1. (20)

The wave vector at the local minimum (blue horizon at ω = 0) in figure 9 is found by
inserting the velocity Uγ into the expression for the double root k2 in (7) and taking the
upper sign

kγ =

(
ρg

γ

)1/2

. (21)

The other local extremum at k > 0 in figure 9, the white horizon for a non-zero ω given by the
horizontal red line in the figure, occurs at

k2 = 0.137

(
ρg

γ

)1/2

, (22)

and the corresponding ω (red line) is

ω = 0.180

(
ρg3

γ

)1/4

, (23)

where the exact but lengthy numerical coefficients have not been reproduced. The simple root
k1 for U = Uγ is zero for ω = 0, while for ω given by (2) (red line figure 9) the simple root is
(intersection of red line with green curve at large k > 0 in figure 9)

k1 = 1.73

(
ρg

γ

)1/2

. (24)
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The last three results are obtained from the constraint (9) and the expressions (7) for the double
and single roots, with U = Uγ .

We see from figure 9 that, in the limit ω → 0 (T → ∞), the negative horizon also occurs at
the flow velocity Uγ , as well as the blue horizon, and the wave vector at the negative horizon is
minus that at the blue horizon, −kγ . Figure 9 shows that, for waves with positive laboratory
frequency ω, the counter-flow velocity Uγ is the threshold for the existence of waves with
negative co-moving frequency. The threshold flow velocity for such waves is the threshold for
the negative horizon. It follows that the curve in the |U | versus T diagram (figure 7) relating
the period to the flow speed at the negative horizon must lie above the line |U | = |Uγ | and
asymptotically approach this line as T → ∞. This negative-horizon curve is also plotted in
figure 7. It lies above the blue-horizon curve but shares with it the asymptote |U | = |Uγ |. Unlike
the white- and blue-horizon curves in figure 7, which both end at the cusp (|Uc|, Tc) for small
T , the negative-horizon curve diverges to |U | → ∞ as T → 0. This behaviour of the negative
horizon is clear from the dispersion plots because as T → 0 (ω → ∞), the flow speed |U |

must increase without limit in order for the local maximum in the negative-k curve to reach the
horizontal frequency line (see for example figure 4).

The flow velocity Uγ that appears as an asymptote in the |U | versus T diagram (figure 7)
has additional significance in fluid mechanics. Firstly, it is a well-known property of gravity-
capillary waves on static water (U = 0) that the minimum phase velocity of the waves is given
(apart from the sign) by the expression (20) for Uγ . The velocity Uγ is also important in the case
of shear flows, i.e. velocity profiles that change with the fluid depth. It was shown by Caponi
et al [48] that a sufficient condition for a shear flow to become spontaneously unstable is for the
flow velocity on the surface of the fluid to exceed Uγ . The instability leads to the generation
of gravity-capillary waves on the fluid surface [48]. Another example in shear flows is the
appearance of negative-energy waves at the interface of two fluid layers, which occurs when
the relative velocity of the layers exceeds Uγ . This is related to the famous Kelvin–Helmholtz
instability, as discussed by Fabrikant and Stepanyants [23].

Figure 7 allows the classification of the behaviour of gravity-capillary waves on a stationary
counter-flow. The period T is conserved in the wave evolution and so, by fixing a vertical line
in the figure, one can distinguish five qualitatively different possibilities for waves of a single
frequency:

1. T < Tc. As one moves into regions in the velocity profile U (x) < 0 with higher counter-
flow speeds, one moves from region I in figure 7 into region V. The dispersion plots and
ray solutions for this case are shown in figure 10. Notable is the fact that there is no white
or blue horizon.

2. T = Tc. Here the line of constant T is the vertical green line in figure 7 that separates
region I from regions II and III and passes through the cusp point (|Uc|, Tc). The dispersion
and ray plots are shown in figure 8. As already discussed, this case is the threshold for the
appearance of the white and blue horizons.

3. Tc < T < Tb. The line of constant T lies between the green and brown vertical lines in
figure 7 and so passes through region III. Here, increasing counter-flow speeds takes us
from region II to IV to III to VI in figure 7. The dispersion plots and ray solutions for this
case are shown in figure 11. Here there is a white and blue horizon, and the white horizon
occurs at a lower counter-flow speed than the negative horizon.
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Figure 10. Dispersion plots and ray solutions for waves with period T < Tc. The
Roman numerals I and V refer to counter-flow speeds that lie in the regions
labelled by these numerals in figure 7. The period is T = 0.382 s and the flow
velocities are −0.159 m s−1 (I) and −0.277 m s−1 (V).

4. T = Tb, defined by the brown vertical line in figure 7. The line T = Tb passes through the
point where regions III, IV, VII and VI meet, at |U | = |Ub|. The significance of the point
(|Ub|, Tb) is that it is the intersection of the white-horizon curve and the negative-horizon
curve. This means that, for a wave with period Tb, the white horizon occurs at the same
counter-flow speed as the negative horizon. Figure 12 confirms this in the dispersion plots
and ray solutions. The values (Ub, Tb) must be found numerically, and for water they are
Tb = 0.647 s and Ub = −0.255 m s−1.

5. T > Tb. Here the line of constant T passes through region VII in figure 7. Increasing
counter-flow speeds takes us from regions II to IV to VII to VI. The dispersion plots and ray
solutions for this case are shown in figure 13. Here there is a white and blue horizon, and
the white horizon occurs at a higher counter-flow speed than the negative horizon (compare
carefully with case 3 above).
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Figure 11. Dispersion plots and ray solutions for waves with period Tc < T <

Tb. The Roman numerals refer to counter-flow speeds that lie in the regions
labelled by these numerals in figure 7. The period is T = 0.510 s and the flow
velocities are −0.169 m s−1 (II), −0.194 m s−1 (IV), −0.231 m s−1 (III) and
−0.267 m s−1 (VI).

Trulsen [44] inferred from his results the structure of the (|U |, T )-diagram of figure 7, but
without the negative-horizon curve. He also derived the existence of the cusp (|Uc|, Tc) as a
triple-root solution of the dispersion relation [44].

Recently, we observed (with continuous waves trains) the regions VI, VII and IV of
figure 7, as reported in our experimental |U | versus T diagram [22]. The distinction between
the regions II and IV was unclear from our data. Our wave maker was limited to a minimum
period of 0.5 s, which is higher than Tc = 0.4255 s. Our focus was on the conversion into waves
with negative co-moving frequency rather than conversion into capillary waves in the double-
bouncing behaviour described above. Conversion to capillary waves is difficult to observe
experimentally because of the rapid dissipation of capillary waves (we were unaware of the
work by Badulin et al [34]). In addition, we used a rather high period (far from Tc) to get long
wavelengths of the ingoing waves since the waves with negative co-moving frequency should
be produced with a drastic reduction in the wavelength according to the dispersion relation. We
were surprised to find indications of waves with negative co-moving frequency even without
wave blocking (a white horizon).
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Figure 12. Dispersion plots and ray solutions for waves with period T = Tb (see
figure 7). Both the white and negative horizons occur at the same counter-flow
velocity U = Ub, the point (Tb, |Ub|) being the intersection of the curves for these
two horizons in figure 7. For water, Tb = 0.647 s and Ub = −0.255 m s−1.

Badulin et al [34] performed experiments with wave packets (three to ten wave cycles
centred on periods in the range T = 0.33–0.66 s) sent on a counter-flow with speed |U | between
0.04 and 0.3 m s−1 over a sloping bottom. Double bouncing of the input waves was observed
with a strong reduction in both wavelength (from λ = 0.2 m to 2 mm!) and amplitude. These
authors presented only one photograph, at T = 0.52 s, of the conversion phenomenon and one
measurement of the amplitude of waves as a function of the position/velocity (T = 0.5 s and
dU/dx = 0.1 s−1), but beautiful measurements of the effect of the velocity on the wavelength.
No results for periods less than Tc = 0.425 s were reported.

4. A thermodynamic analogy

In the previous section, we summarized the behaviour of gravity-capillary waves (with kh � 1)
on a stationary counter-flow by means of a diagram in the (|U |, T )-parameter space (figure 7).
This diagram allows one to visualize the evolution of an incident wave of a single frequency
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Figure 13. Dispersion plots and ray solutions for waves with period T > Tb.
The Roman numerals refer to counter-flow speeds that lie in the regions
labelled by these numerals in figure 7. The period is T = 0.692 s and the flow
velocities are −0.192 m s−1 (II), −0.214 m s−1 (IV), −0.260 m s−1 (VII) and
−0.281 m s−1 (VI).

(which is conserved), as was illustrated in the five cases in figures 8 and 10–13. In this section,
we note a similarity between figure 7 and a phase diagram in thermodynamics, where the
horizon lines in figure 7 are analogous to the lines separating different phases (first-order phase
transition). In particular, the cusp point (|Uc|, Tc) in figure 7 looks like a critical point (second-
order phase transition) in a phase diagram.

Let us explore this thermodynamic analogy a little further. In thermodynamics, a system is
described by an equation of state of the form f (P, V, 2) = 0, where P is the pressure, V is the
volume and 2 is the temperature. For example, the equation of state of a van der Waals gas can
be written [47]

V 3
−

(
nb +

n R2

P

)
V 2 +

n2a

P
V −

n3ab

P
= 0, (25)
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Figure 14. The state of a wave on a counter-flow is a surface in (U, k, T )-space
given by (26). This surface has a fold catastrophe in the positive-k sector, similar
to the fold catastrophe of the van der Waals gas [47]. The red curve on the state
surface is the white horizon and the blue curve is the blue horizon. The horizon
curves meet at (Uc, kc, Tc), which is analogous to the critical point of the van der
Waals gas. The white- and blue-horizon curves in figure 7 are the projection of
the curves on the state surface to the (U, T )-plane.

where n is the number of molecules divided by Avogadro’s number, R is the gas constant,
b relates to the non-zero volume of the molecules and a is a measure of the molecular
interaction. A familiar property of the van der Waals gas is the existence of a critical point
in the (P, 2)-phase diagram. This is associated with a fold catastrophe in the surface (25) in
(P, V, 2)-space that constitutes the state-space of the gas [47]. Now the dispersion relation (5),
written as

k3
−

ρU 2

γ
k2 +

ρ

γ

(
g +

4πU

T

)
k −

4π2ρ

γ T 2
= 0, (26)

describes the state of a wave on a counter-flow as a surface in (U, k, T )-space, and this
surface has the same kind of fold catastrophe as the van der Waals gas (see figure 14). The
connection between wave blocking and catastrophe theory was inferred a long time ago by
Peregrine and Smith [36], and more recently by Trulsen [44]. The white and blue horizons
appear as curves on the state surface in figure 14, which converge and join at the ‘critical point’
(Uc, kc, Tc) given by (16)–(18). Only the positive-k part of the state surface is shown in figure 14,
since this contains the point analogous to the thermodynamic critical point. By projecting the
surface in figure 14 onto the (U, T )-plane, one obtains the part of the ‘phase diagram’ figure 7
containing the white and blue horizons, similar to the (P, 2)-diagram of the van der Waals
gas [47].
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Van der Waals gas Wave–current interaction

Volume V Wave number k
Temperature 2 Frequency ω

Pressure P Flow velocity U
Compressibility ∂V

∂ P Susceptibility ∂k
∂U

Spinodal line Blocking line
Perfect gas P =

NkB2
V Pure advection U =

ω
k

We can summarize the analogy between the van der Waals gas and waves on a counter-flow
with the table, which we stress describes only a qualitative relationship.

The perfect gas is seen to correspond to very large ω and U (pure advection U = ω/k of
the surface waves). In addition, the perfect gas is obtained by setting the parameters a and b to
zero. Similarly, pure advection of the surface waves corresponds to setting the parameters γ and
g to zero.

The fold catastrophe in figure 14 can also be projected to the (U, k)-plane (figure 15). From
the dispersion relation (5), these projections are given by

U (k) =
ω

k
−

√
g

k
+

γ

ρ
k, (27)

with a fixed value of ω (T ). Figure 15 shows the curves U (k) for different periods T , for both
the gravity-capillary case (red lines in (a)–(c)) and the pure-gravity case (blue lines in (a)–(c)).
Figure 15(d) shows U (k) for a range of periods T in the gravity-capillary case. These isoperiod
curves are analogous to the Andrews isotherms for a real gas.

We have seen from dispersion plots that wave-blocking corresponds to local extrema of
the function ω(k). It follows from the implicit function theorem that the minimum (maximum)
of U (k) corresponds to the maximum (minimum) of ω(k), and therefore blocking lines are
given by the local extrema of U (k). These local extrema ∂U/∂k = 0 are the analogues of the
spinodal line ∂ P/∂V = 0 of the van der Waals gas. Without surface tension (blue lines in
figures 15(a)–(c)), U (k) has a single minimum that lies on the dotted black line in these plots.
With surface tension (red lines in figure 15(a)–(c)), U (k) has a local maximum in addition.
At T = Tc (figure 15(b)) the minimum and the maximum of U (k) merge and an inflection
point appears. This corresponds to the cusp in the (U, T )-plane (figure 7). We can define a
mechanical susceptibility χm = ( ∂k

∂U )T , analogous to the isothermal compressibility coefficient
χθ = −

1
V ( ∂V

∂ P )θ , that diverges at the horizons, just as the compressibility of the gas diverges at
the spinodal line.

In the limit of infinite period T → ∞ (ω → 0), we found that the wave is described by a
flow speed (20) and a wave number (21). We recover this result from the ω = 0 case of (27),
which is

U (k) = −

√
g

k
+

γ

ρ
k. (28)

This is plotted in figure 15(c) and has a maximum ∂U
∂k = 0 at wave number

k =

√
ρg

γ
=

1

lc
= kγ , (29)

where lc is the capillary length. This wave number in (28) reproduces Uγ , given by (20).
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Figure 15. The red curves in panels (a)–(c) show U as a function of k for different periods T :
panel (a) is for T > Tc, (b) for T = Tc and (c) for T → ∞. (d) shows a series of plots of U (k)

for different T ; the green curve is for T → 0 (pure advection). The blue curves in (a)–(c) show
the pure-gravity case. The black dotted line in all four figures shows, in the pure-gravity case,
the locus of the local minimum of U (k) as T changes. The horizontal dotted purple line is Uγ ;
this is the value of U at the local maximum of U (k) for T → ∞ (c). The horizontal dotted green
line is Uc; this is the value of U at the point of inflection of U (k) for T = Tc (b). The horizontal
dotted orange line is Ug, which is proportional to T (see (14)); this gives the value of U at the
local minimum in the pure gravity case (blue curves in (a)–(c)).

The principle of corresponding states implies that the properties of real gas are universal
functions of the state variables scaled to the critical point. For the Van der Waals gas, it is well
known that the equation of state can be written in a universal form around the critical point
(Vc = 3 nb, θc =

8a
27bR and Pc =

a
27b2 ),(

Pr +
3

V 2
r

)
(3Vr − 1) = 8θr, (30)

where the subscript r means reduced variable (Vr =
V
Vc

, θr =
θ

θc
and Pr =

P
Pc

). Similarly, using the

scalings (kr =

√
γ k

√
ρg , ωr =

γ 1/4ω

(ρg3)1/4 and Ur =
ρ1/4U
(γ g)1/4 ), we find the universal dispersion relation

(ωr − Urkr)
2
= kr(1 + k2

r ). (31)
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Whatever the fluid (surface tension, density), its wave-like behaviour will be the same close to
the cusp. The dimensionless form of the constraint (9) becomes

ωrU
5
r +

1

4
U 4

r + ω3
r U 3

r −
15

2
ω2

r U 2
r − 6ωrUr − 1 −

27

4
ω4

r = 0. (32)

One recovers Uγ = −
√

2(
γ g
ρ

)1/4 by imposing ωr = 0. By introducing another scaling

U ′

r = Ur ωr =
Uω

g the constraint reads

U ′5
r +

1

4
U ′4

r + ω4
r

(
U ′3

r −
15

2
U ′2

r − 6U ′

r − 1 −
27

4
ω4

r

)
= 0. (33)

One recovers Ug = −
1
4

g
ω

by imposing ωr = 0.

5. Conclusions and perspectives

We have described the interaction of linear gravity-capillary waves with a counter-flow, with
emphasis on the various horizon effects (wave blocking in fluid-mechanics terminology). The
case of waves with negative co-moving frequency has been included throughout. These waves
are crucial for the Hawking effect and they have been neglected in the fluid-mechanics literature
on wave blocking. The Hawking effect is a remarkable process in which an incident wave
generates a wave with negative co-moving frequency, with a resulting amplification of the
incident wave (this implies an extraction of energy from the flow). It has been shown that this
process is robust in the presence of dispersion [10]–[17], and the linear theory of surface waves
falls into the class of systems that exhibit the Hawking effect [18]. Experimental evidence of
the generation of waves with negative co-moving frequency was reported in [22], and further
experiments are planned.

We have presented analytical results for the deep water/short wavelength case kh � 1 that
are more comprehensive than those given elsewhere. A similarity of the state space of the waves
to that of a thermodynamic system was pointed out. The curves in the state space representing
the horizon lines are analogous to curves separating thermodynamic phases, and there is even
an analogue of a thermodynamic critical point.

Schützhold and Unruh showed that the regime of gravity-wave propagation in an effective
Schwarzschild-like metric corresponds to the shallow water limit kh � 1 [18]. The interaction
with the white-hole horizon necessarily tunes a wave out of this regime (kh � 1) into the kh � 1
regime, in which dispersion causes the effective-metric description to break down. In other
words, for pure gravity waves, the white horizon is not dispersive when kh � 1, whereas it is
dispersive when kh � 1. On the other hand, waves in the kh � 1 regime considered in this
paper stay in this regime in the interaction with the counter-flow.

Previous results regarding the shape of waves at a blocking line (horizon) can be developed
further for gravity-capillary waves. The horizons for surface waves can be treated as examples
of saddle-node lines, which also describe caustics in optics. It is well known that the Airy
function describes both the intensity of light close to an optical caustic of the fold type [49, 50]
and the water shape for the amplitude of gravity waves close to a blocking line [26, 36, 41].
It will be shown elsewhere that the Airy function depends on a ‘stopping length’ L s (roughly
the width of the arch of the Airy function), which scales like L s ≈ gT 5/3( dU

dx )
−1/3
x=x∗ , where

x∗ is the position of the white horizon and ( dU
dx )x=x∗ is the ‘surface gravity’ at the horizon.

New Journal of Physics 12 (2010) 095018 (http://www.njp.org/)

http://www.njp.org/


27

An experimental measurement of the Airy shape has been carried out by Chawla and Kirby [27].
If surface tension is taken into account, we have seen that there is a critical point at the
intersection of two saddle-node lines (white and blue horizons). We anticipate that the wave
at the critical point will be described by a Pearcey catastrophe integral [36, 44] due to the
superposition of two Airy catastrophe integrals for the two saddle-node lines.
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