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Abstract. The conversion of positive-frequency waves into negative-frequency
waves at the event horizon is the mechanism at the heart of the Hawking
radiation of black holes. In black-hole analogues, horizons are formed for waves
propagating in a medium against the current when and where the flow exceeds
the wave velocity. We report on the first direct observation of negative-frequency
waves converted from positive-frequency waves in a moving medium. The
measured degree of mode conversion is significantly higher than that expected
from the theory.
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1. Introduction

The theory of Hawking radiation of black holes [1] connects three separate disciplines
of physics—quantum mechanics, general relativity and thermodynamics [2]—and has been
applied to test potential quantum theories of gravity [3, 4]. The radiation of astrophysical black
holes is too feeble to be detectable, but laboratory analogues [5]–[8] of the event horizon may
demonstrate the physics behind Hawking radiation. Most candidates of artificial black holes rely
on quantum fluids [8]–[12], but here we report an experiment with a classical fluid: water [13]. A
horizon is formed when flowing water exceeds the wave velocity. We observed a key ingredient
of the classical mechanism behind Hawking radiation, the generation of waves with negative
frequencies [1, 14, 15]. However, the measured conversion of positive- into negative-frequency
waves is significantly higher than that expected from the theory [13] for reasons we have not
yet understood.

In 1974, Hawking [1] predicted that black holes are not black: they radiate. The event
horizon generates pairs of quanta; one particle of each pair emerges into space whereas its
partner falls into the singularity. The quantum physics of pair creation at horizons is based
on the features of classical wave-packet propagation [14, 15, 21] as follows: figure1 shows
a wave packet escaping from the horizon. In a thought experiment, Hawking [21] traced such
wave packets backwards in time and realized that they originate from two distinct waves: one
oscillating with positive frequencies and another with negative frequencies. Note that one can
visualize negative frequencies in the way waves propagate in space and time, i.e. in space–
time diagrams or videos, but negative frequencies do not directly appear in snapshots of wave
packets. Figure2 compares the space–time diagrams of ordinary positive-frequency waves with
the behavior of negative-frequency waves. The figure shows that the lines of equal phase in
space–time have negative slopes for negative frequencies, as we discuss in section2.

The distinction between positive and negative frequencies is important for quantum
fields [14, 15, 21]: the positive frequencies distinguish the annihilation and the negative
frequencies the creation operators. A process that mixes positive and negative frequencies thus
creates particles; the horizon spontaneously emits radiation. Figure1 illustrates the wave packets
of the particles that escape into space; the particles that fall into the black hole are shown in
figure3. They originate from mixtures of the two initial wave packets of figure1. Therefore, the
created quanta appear in entangled pairs, one escaping, other one falling into singularity.
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Figure 1. Tracing wave packets backwards in time at the horizon of a black
hole. Schematic space–time diagram showing a wave packet escaping into space
(top), potentially reaching an observer. This wave packet oscillates at positive
frequencies, but it originates from two distinct waves, one with positive and
another one with negative frequencies, shown below the escaping wave packet
in the space–time diagram (for times in the past). This mixing of positive and
negative frequencies is the classical root of the quantum Hawking radiation [1].
Note that the deflection of the incident waves at the horizon depends on the
dispersion properties of the ‘space–time medium’ [16]–[20]. In astrophysics,
these properties are unknown, in contrast to laboratory analogues.

Seen from outside, the black hole turns out [14, 15, 21] to emit black-body radiation with
a temperature [1] that is proportional to the surface gravity at the horizon, or, equivalently,
inversely proportional to the size of the black hole, the Schwarzschild radius. Since Hawking’s
prediction, the radiation of horizons has been regarded as a confirmation for black-hole
thermodynamics [2] and as a crucial test case for quantum theories of gravity such as superstring
theory [3] and loop quantum gravity [4].

However, near the event horizon, fields are subject to frequency shifts beyond the Planck
scale [16]–[20], as figure1 schematically illustrates: the incident wave packets oscillate at
significantly higher frequencies than the outgoing waves. The mechanism that could limit the
frequency shifting at the horizon of the astrophysical black hole is unknown. Hawking radiation
may thus depend on as yet unknown physics or may not exist at all. There is no observational
evidence for Hawking radiation in astrophysics yet; and it seems unlikely that there ever will
be for practical reasons—radiation with characteristic thermal wavelengths in the order of the
Schwarzschild radius, a few km for solar-mass black holes, is obscured by the cm-waves of the
Cosmic Microwave Background.

Astrophysical black holes are too large for noticeable Hawking radiation, but laboratory
analogues [5]–[8] of black holes offer valuable insights into the mechanism of radiating
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Figure 2. Positive- versus negative-frequency waves. The left diagram shows
the space–time diagram of a wave with positive frequency, whereas the right
diagram shows a negative-frequency wave. Section2 explains the physics of
negative-frequency waves in a moving medium. The pictures show space–time
diagrams of waves in a medium moving with uniform speed. The left diagram
displays a wave with positive wavenumberk, whereas the right diagrams shows
a wave with negativek and negative frequencyω′ in the co-moving frame.
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Figure 3. Hawking partner. Schematic space–time diagram of a wave packet
propagating against the ‘space–time flow’ on the other side of the horizon,
drifting toward the singularity of the black hole. Like the wave illustrated in
figure 1, this wave packet originates from waves with positive and negative
frequencies. These waves are mixtures of the escaping waves of figure1 traced
backwards in time; hence the escaping quanta and the in-falling quanta form
entangled partners.

horizons. Most analogues are based on a simple idea [8]–[10]: black holes behave like moving
fluids. Consider waves with phase velocityc′ in a medium of flow speedu. If the magnitude of
u exceedsc′, waves can no longer propagate upstream; they are trapped beyond a horizon.
The horizon creates wave-quanta [5]–[8], the analogue of Hawking radiation [1], with an
effective temperature that depends on the flow gradient at the horizon, the analogue [5]–[8] of
the surface gravity. The radiation is only noticeable if the temperature of the fluid lies below the
effective Hawking temperature. Superfluids [8] like helium-3 or ultracold quantum gases
[11, 12] may form radiating horizons for their elementary excitations and so would moving
optical media for photons [7, 22].
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Figure 4. White-hole horizon. In order to demonstrate in a laboratory setting
the tracing of wave packets backwards in time at a black-hole horizon, one
has to time-reverse figure1. A time-reversed black hole is a white hole. The
arrow indicates the direction of the moving medium that establishes a horizon
for counter-propagating waves.

On the other hand, at the heart of the Hawking effect lies a classical process that can
be demonstrated with classical fluids such as water: the generation of waves with negative
frequencies. For this, one should reproduce the characteristic behavior of wave packets at
horizons traced backwards in time illustrated in figure1. This is possible with a time-reversed
black hole—a white-hole horizon—as shown in figure4. The horizon of the white hole
corresponds to the following analogy: imagine a fast river flowing out into the sea, getting
slower. Waves cannot enter the river beyond the point where the flow speed exceeds the wave
velocity; beyond this point the river resembles an object that nothing can enter, the white
hole. Such wave blocking has been comprehensively studied in the fluid-mechanics literature
[23]–[28], but to our knowledge, the generation of negative-frequency waves has never been
observed before.

2. Negative frequencies

What are negative-frequency waves? Consider linear one-dimensional6 wave propagation in a
moving medium: a wave with phaseϕ propagates in thex-direction against the flowu. The

6 The essential physics of horizons is contained in one-dimensional wave propagation, even in the case of the three-
dimensional black hole, because near horizons the wavelength is dramatically reduced such that their curvatures
are insignificant.
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Figure 5. Doppler formula (2) versus dispersion relation (4) for ω′ plotted in
arbitrary units. The wavenumberki describes the incident wave,kb the blue-
shifted andkh the Hawking wave with negative wavenumberk and negative
frequencyω′.

phase evolves in timet as

ϕ =

∫
(k dx − ω dt) , (1)

wherek denotes the wavenumber andω the frequency in the laboratory frame. Imagine we
construct at each pointx a frame that is co-moving with the fluid. In the locally co-moving
frames7 dx = dx′ + u dt ′ and dt = dt ′, and so the phase evolves in terms of the co-moving
coordinates as the integral ofk dx′

− ω′ dt ′ with

ω′
= ω − uk. (2)

Equation (2) simply describes the Doppler effect—waves are frequency-shifted due to the
motion of the medium. In a locally co-moving frame,ω′ can only depend on the wavenumberk
and the properties of the medium, but not explicitly on the position:ω′ is a functionω′(k) that
is given by the dispersion relation. The phase velocityc′ is defined asω′/k, whereas the group
velocity is

vg =
∂ω

∂k
= v′

g + u , v′

g =
∂ω′

∂k
. (3)

What can we say about the dispersion relation in general? In isotropic media,ω′2 is an even
function ofk, because waves should be able to propagate in positive and negative directions in
the same way. Without loss of generality, we assume that the medium moves in the negative
direction (from the right to the left). In this case, counter-propagating waves have positive phase
velocitiesc′. Therefore, we take the branch ofω′, whereω′/k is positive, i.e. wherec′ is an odd
function ofk that is positive for positivek. We also assume that the counter-propagating waves
move with positive group-velocitiesv′

g in the medium and that the group-velocity dispersion of
the medium is normal, i.e.v′

g monotonically decreases for increasing|k|. Figure5 shows our
specific case that satisfies these general requirements.

For a stationary flow the laboratory frequencyω is fixed. The wavenumberk is given by the
Doppler formula (2) and the dispersion relationω′(k). In general, the solution of this equation is

7 For simplicity, we ignore effects of relativistic velocities.
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Figure 6. Schematic diagram of the experiment.

multi-valued: each frequencyω corresponds to several wavenumbersk, i.e. to several physically
allowed waves. As visualized in figure5, the physically allowed waves are determined by
the pointsk where the lineω − uk intersects the curveω′(k). One of these wavenumbersk
is always negative, as figure5 illustrates. Sinceω′ is an odd function ofk, the co-moving
frequencyω′ must be negative for negativek, although the frequencyω in the laboratory frame is
always positive. We call waves with negative co-moving frequenciesnegative-frequency waves.
Imagine we display the wave propagation in a space–time diagram, see figure2. According to
equation (1), the lines of constant phaseϕ have positive slopes dt/dx for positivek and negative
slopes for negativek. We regard this behavior as the characteristic feature of negative-frequency
waves.

Figure5 shows that for negative-frequency waves the slope of the curveω′(k) is smaller
than the slope of the Doppler line, smaller than−u. As a consequence of equation (3), the
group velocityvg in the laboratory frame must be negative. Therefore, negative-frequency waves
cannot be launched directly, but they can be the result of a mode conversion from incident
positive-frequency waves.

3. Water waves

Following a suggestion by Schützhold and Unruh [13], we studied water waves in the channel
schematically shown in figure6. A ramp in the channel creates a gradient in flow speed. The
flowing water forms a white-hole horizon, an object that waves cannot enter, when the flow
|u| matches the group velocity∂ω′/∂k of the waves. Water waves—gravity waves—obey the
dispersion relation [29]

ω′2
= gk tanh(kh), (4)

whereg denotes the gravitational acceleration of the Earth at the water surface andh is the
height of the channel. In the limit of long wavelengths, i.e. small wavenumbersk, the dispersion
relation (4) reduces toω′2

= gh k2; waves propagate withc′
=

√
gh. We see from the Doppler

formula (2) that, in this limit,ω′ is connected toω andk by a quadratic form, which defines
a space–time geometry [30]. A rigorous analysis [13] proves that the propagation of water
waves is exactly equivalent to wave propagation in space–time geometries, as long as|k| is
much smaller than 1/h. So, in our case, the channel heighth serves as a simple analogue of the
Planck scale; waves with wavelengths shorter thanh do not experience the effective space–time
geometry anymore. Close to the horizon, the incident waves are compressed untilk reaches the
scale of 1/h.
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To characterize the waves, we use the graphical solution of the Doppler formula (2)
combined with the dispersion relation (4) shown in figure5. For a given positive frequency
ω, either one or three real solutions exist, one negative and possibly two positivek. Only in
the case of a positive solution will the wave-maker launch waves, because the group velocity
(3) of the negative-frequency wave is negative. The slope ofω′ at the smallest positivek is
higher than the slope of the Doppler lineω − uk. For this wavenumber the group velocity is
positive: thisk describes the incident wave. When the incident wave propagates against the
rising current, the slope of the Doppler line rises until the two positivek merge. At this point,
the flow matches the group velocity of the wave. The incident wave is converted into a short-
wavelength wave; it is blue-shifted below the effective Planck scaleh. For the blue-shifted wave,
∂ω′/∂k lies below the flow speed|u|: the blue-shifted wave drifts back with negative group
velocity (3), butk is positive and so is the frequencyω′. Figure5 shows that such wave blocking
[23]–[28] cannot occur below a critical flow speed. In order to estimate [26] the criticalu, we
replace tanh(kh) in the dispersion relation (4) by the asymptotic value of 1. A realk ceases
to exist when the discriminant of the resulting quadratic equation vanishes, for|u| = u∗

=

g/(4ω). Since the dispersion curve (4) lies below the asymptotics, this procedure [26] gives
an overestimation of the critical flow speed.

The horizon also converts [19]–[21] by tunneling a part of the incident wave into the
negative-k branch of figure5, generating a wave with negative co-moving frequency, the
classical analogue of Hawking radiation. In fluid dynamics, the blue-shifted waves have been
discussed and observed in connection with wave-blocking [23]–[28] but to our knowledge,
the negative-frequency waves have neither been theoretically analyzed in the fluid-dynamics
literature, nor experimentally observed.

4. Experiment

We performed our experiment at ACRI, a private research company working on environmental
fluid mechanics problems such as coastal engineering. The Génimar Laboratory, a department of
ACRI, features a wave-tank 30 m long, 1.8 m wide and 1.8 m deep. The wave-maker is of piston-
type and can generate waves with periods ranging from 0.6 to 2.5 s with typical amplitudes
around 5–30 cm. A current can be superimposed in the same direction as the wave propagation
or in the opposite one, with a maximum flow rate around 1.2 m3 s−1. To generate a water-wave
horizon, we insert a ramp immersed in water, with positive and negative slopes separated by
a flat section; and send on it a train of waves against the reverse fluid flow produced by the
pump. At the place where the flow speed equals the group velocity of the waves a horizon is
created. The geometrical parameters are: maximum water height 1.4 or 1.6 m; positive slope
15.5◦; length of the flat part 6 m; minimum water height 30 or 50 cm; negative slope 18.5◦.
We fix the physical characteristics of the waves, period and amplitude, and only vary the
background flow. We record the waves with the three video cameras indicated in figure6. As the
background velocity is turbulent (the Reynolds number based on the water height is very large)
and varies with depth, the horizon should be deduced from the mean velocity〈u(h, t)〉 measured
at the interface between air and water; the brackets denote time averaging. Due to experimental
constraints, we measured the background flow with an MHD sensor averaged during 10 s. The
velocity profile on the flat part of the background flow is plug-like. Our first control parameter is
umax, the maximum of the counter-current plug velocity over the flat part of the geometric profile
without water waves. We have checked that the velocity profiles are similar along a cross-section
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Figure 7. Phase diagram of our experiment. Each circle corresponds to a run with
wave periodT = 2π/ω and maximal flow speedumax. The dots indicate runs
where we observed negative-frequency waves, the squares run with horizons. In
regimes without horizons, we saw a transition to mode conversion into purely
positive frequencies below the lower green line in the diagram. The points
(a) and (b) indicate the parameters used in figure8.

of the tank. The second control parameter is the period of oscillations of the wave-maker. Both
parameters are displayed in the phase diagram of figure7.

In our experiments, we observed indications of wave conversion in the presence of
horizons, but the cleanest data we obtained were for flow speeds just below the horizon
condition. In this case, the wave conversion still occurs [31], although it is reduced in magnitude.
Without a group-velocity horizon, the flow is much quieter, wave breaking and turbulence
are significantly reduced. Figure8 shows the space–time diagrams of two typical cases, one
illustrating the conversion into short waves with positive phase velocity, and the other showing
waves with negative frequency superposed on the incident waves.

5. Numerical simulations

In order to test whether conversion into negative-frequency modes occurs even in the absence
of a horizon, we applied Unruh’s method [19] for numerically simulating waves in a moving
medium. We consider wave packets propagating against the current in a simple one-dimensional
model for the flow, using periodic boundary conditions, and analyze the mode conversion. This
simulation does not describe the influence of turbulence, nonlinearity, the three-dimensional
aspects of our experiment, nor the variation of the flow with water depth, but it captures the
qualitative aspects of the Hawking effect and proves that the mode conversion can occur without
a horizon, a regime where the experiment is least affected by wave breaking and turbulence.
A related example of Hawking radiation without horizon has been studied before [31] that
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Figure 8. Space–time diagrams, dimensions 1 m by 16 s, showing water waves
propagating from the left to the right with the parameters (a) and (b) of figure7,
initial amplitude 5 cm and water height 1.4 m. No horizon is formed, but mode
conversion still occurs. (a) Conversion into the positive-frequency waveskb of
figure 5; (b) waves with negative frequency (negative phase slope as shown
in figure 2). The images were extracted from the video data recorded with
camera 1 of figure6. The right pictures display time traces along the lines
indicated in the space–time diagrams. The traces show that the additional waves
are periodic inT , indicating that they are converted incident waves.

qualitatively agrees with our findings, although our case is significantly more extreme. Figure9
shows the result of a wave packet interacting with the spatially dependent flow given by

u(x) = −u0 − u1[tanh(ax) − tanh(a(x − x0))] ; (5)

the fluid moves left at velocity−u0 at x < 0, decreasing to−u0 − u1 betweenx = 0 andx = x0

and returning to−u0 at x > x0. Gravity waves with the perturbationw(t, x) of the velocity
potential obey the equation [13]

(∂t + ∂xu)(∂t + u∂x)w = ig∂x tanh(−ih∂x)w , (6)

giving the dispersion relation (4). The wave packet propagates to the right; the flow speed
nowhere reaches a value great enough to block the packet and create a white-hole horizon. When
the packet travels into the faster-flow regionx > 0 some of it tunnels into the blue-shifted root
of the dispersion relation and this part propagates back to the left. There is also some tunneling
into the negativek root; this portion has shorter wavelength than the blue-shifted waves and
travels more quickly to the left. The simulation shows that negative-frequency waves can be
generated without the presence of a horizon. The slope in the simulation is not realistic for
our experiment, however, otherwise, there would be no visiblekh in the simulation. But in the
experiment negative-frequency waves were clearly observed. Apparently, the simple model [13]
we used does not capture all the complexity of our system.
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Figure 9. Wave–packet simulations. The left figure shows the incident
wave packet traveling in the positivex-direction, the right figure its partial
conversion into two wavelength components traveling in negativex-direction.
The components separate because of their different group velocities; the
Hawking component is visible in the center of the figure. The wrap-around is
caused by periodic boundary conditions and most of the packet that travels to
the right beyond the conversion region is not shown. We used the parameters
u0 = 0.7 m s−1, u1 = 0.122 m s−1, a = 12 m−1, h = 0.6 m andT = 2.5 s.

6. Conclusions

We believe we have made the first direct observation of the conversion of incident waves with
positive- into negative-frequency waves in a moving medium. In astrophysics, such a mode
conversion occurs at the event horizon of black holes. It represents the classical mechanism at
the heart of Hawking radiation [1]. However, we were surprised how strong the experimentally
observed mode conversion is, because in numerical simulations of a simple model [13], we saw a
significantly lower conversion. This model takes into account the correct dispersion relation (4),
but it does not describe turbulence, nonlinearity, nor the three-dimensional nature of our
experiment. It would be highly desirable to find out exactly what happens to water waves at
horizons. Unfortunately, with the current set-up, we do not have sufficient data to characterize
the actual process of mode conversion in detail. It is conceivable that we have seen a new fluid-
mechanics phenomenon that significantly enhances the Hawking effect. Could it be a nonlinear
mode conversion, a nonlinear process generating harmonics with negative frequencies? We
observed that the incident waves become steeper as they propagate against the current. Hence,
locally, waves can be generated close to the crest, possibly with additional vorticity creation,
where geometric cusps could develop through nonlinear effects. These crests waves are then
swept away by the flow8. Moreover, it remains to be checked in future experiments whether a
transverse curvature of the wave crest could also be responsible for the creation of negative-
frequency waves. In any case, despite the limitations of our present experiment, we have found
clear evidence for negative-frequency waves. In this way, we have demonstrated a key ingredient
of the quantum radiation of black holes using a relatively simple classical laboratory analogue,
waves in a water tank.
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