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Viscous  fingering  (VF)  is  a hydrodynamic  instability  that occurs  in a chromatographic  column  when  a  less
viscous fluid  displaces  another  more  viscous  one.  This  instability  is detrimental  to  separation  techniques
as  it  leads  to distorted  peaks  and peak  broadening.  Nonlinear  interactions  between  developing  fingers
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eywords:
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lead  to  complex  dynamics  investigated  in  the  present  study  by means  of  numerical  simulations  based  on
a  simple  model  for  miscible  VF  of  finite  samples.  We  review  the  properties  of  nonlinear  VF  and  discuss
the  quantitative  measures  that  can be  applied  both  on  such  numerical  as  well  as  on  experimental  data  to
gain  insight  into  the  influence  of the  parameters  of  the  problem  on the  nonlinear  properties  of  the  fingers
and  on  the  broadening  of  output  peaks.
ize exclusion chromatography

. Introduction

In the most common form of liquid chromatography, the eluent
eparates the different chemical species of the sample by displac-
ng them selectively through a porous medium already filled with
hat eluent. As the sample usually has a viscosity different from
hat of the eluent, its displacement inside the porous column can
e influenced by a hydrodynamic viscous fingering (VF) instability.
F occurs in a porous medium as soon as a fluid of given viscosity �1
isplaces another more viscous one of viscosity �2 > �1. The inter-
ace between the two fluids does not remain flat anymore but is
eformed into “fingers” of one fluid invading the other one. Because
his fingering is increasing the mixing between the two fluids, it
s particularly detrimental to oil recovery where VF occurs when

ater is displacing oil in underground reservoirs. This explains why
he VF instability has been much studied in the petroleum engineer-
ng literature (see [1] for a review). More fundamental approaches
1–3] have also been developed in the physics literature especially
ollowing the experimental work of Saffman and Taylor [4] and

ooding [5] who have studied experimentally VF between two
mmiscible and miscible fluids respectively in a Hele-Shaw cell [6].
uch a cell consists in two parallel glass or plastic plates separated
y a thin gap in which the dynamics of fluids is easy to visualize

nd to follow by a camera [7].  In such cells, the evolution equations
or the flow velocity averaged across the gap thickness are analog
o Darcy’s law provided the gap thickness is thin enough compared

∗ Corresponding author. Tel.: +32 2 6505774; fax: +32 2 6505767.
E-mail address: adewit@ulb.ac.be (A. De Wit).

021-9673/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
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© 2011 Elsevier B.V. All rights reserved.

to the length and width of the plates. Since then, numerous theo-
retical and experimental studies have allowed to gain insight into
the properties of VF of one single interface. Models vary depending
whether the fluids are immiscible (in which case surface tension is a
stabilizing factor favoring a flat interface) or miscible (where diffu-
sion or dispersion is stabilizing as it favors a reduction in time of the
initial viscosity jump across the interface and smoothes out trans-
verse perturbations). In both cases, the source of the instability, its
driving motor, is the amplitude of the viscosity ratio �2/�1 between
the two fluids. The larger this ratio, the more unstable the interface.
As applications in chromatography are related to miscible VF rather
than immiscible VF, we  will in the sequel only further discuss misci-
ble VF. Thanks to numerous works (see [1,3,7–18] and refs therein),
the basic features of miscible VF of one interface are nowadays well
understood. VF takes place as soon as the viscosity ratio �2/�1 is
larger than 1. The system is more unstable at large injection speed
(large Peclet number) and small transverse dispersion. At onset, the
finger width (or, more precisely, their wavelength since hydrody-
namic instabilities are most generally described as wave systems)
and onset time of the VF pattern can be predicted by a linear sta-
bility analysis [8,9,19]. At later times, the fingers grow and interact
in complex nonlinear dynamics which have been described exper-
imentally and numerically in details [1,4,5,7,10–15].

In this context, understanding VF in chromatographic columns is
of particular interest because this instability is detrimental to the
separation performances [20–38].  Any improvement that would

allow to reduce the influence of VF on peak tailing and band broad-
ening would be of utmost importance. VF in chromatography has a
peculiar feature with regard to VF of one single interface between
two semi-infinite regions which is that the sample injected inside

dx.doi.org/10.1016/j.chroma.2011.09.040
http://www.sciencedirect.com/science/journal/00219673
http://www.elsevier.com/locate/chroma
mailto:adewit@ulb.ac.be
dx.doi.org/10.1016/j.chroma.2011.09.040


8 togr. A

t
i
l
t
v
f
s
c
m
t
o
i
e
t
fi
d
p
c
t
fi
i
o
o
o
t
d
d
e
d
i
m
b
t
f
t
i
d
m
f
o

d
a
t
n
a
m

2

i
v
b
b
m
L
s
c
c
d
t
a

v

354 G. Rousseaux et al. / J. Chroma

he porous matrix is of finite width [31]. VF develops at the frontal
nterface where the sample pushes the eluent if the sample is
ess viscous than the carrying fluid [27–29,32,39,40]. On the con-
rary, VF is observed at the rear interface if the sample is more
iscous than the eluent [22,25,27,28,34]. This is typically the case
or high molecular weight solutes or for polymers in size exclu-
ion chromatography. Several groups have nowadays provided
lear experimental images of VF in chromatographic columns by
agnetic resonance imaging [21–25] or direct optical visualiza-

ion [29,30,33–38]. These visualizations allow to study both the
nset of the instability as well as the later time nonlinear dynam-
cs of the fingers. In order to improve quantitative analysis of these
xperimental data, several types of measurements inspired by the
reatment of data in the physics literature can be performed. A
rst step in this direction has been given in [19,24,31,39–43] using
imensionless models of miscible VF. We  have started to trans-
ose the results in terms of dimensional quantities important in
hromatographic applications focusing on the early onset time of
he instability [19]. It is the goal of this article to complement this
rst study devoted to the linear stability analysis of miscible VF

n packed chromatographic columns [19] by a similar treatment
f the nonlinear dynamics occurring at later times. In particular,
ur study aims at showing the influence on the non-linear regime
f various parameters such as the mean displacement velocity u,
he longitudinal extension of the sample W,  the column diameter
c, the particle diameter dp, the ratio between transverse and axial
ispersion coefficient � and the log–mobility ratio R = ln (�2/�1). We
valuate the influence of VF on the variance of the concentration
istribution, a typical measure of the transport of viscous samples

n chromatographic columns as viscous fingering leads to the defor-
ation in time of the concentration peak either by broadening or

y distortion. This can drastically affect the quality of the separa-
ion in various chromatographic circumstances. This is the case,
or instance in preparative chromatography where highly concen-
rated – and thus highly viscous – sample solutions are used for
ncreasing the productivity, or in size exclusion chromatography
ue to the large intrinsic viscosity of high molecular mass poly-
ers, or still in two-dimensional liquid chromatography where

ractions collected from a first column are displaced in a second
ne by another eluent of different viscosity.

The article is therefore organized as follows: in Section 2, we
escribe the physical model on which we base our numerical
nalysis and describe the numerical technique used to integrate
he evolution equations. In Section 3, we review the typical phe-
omenology of non-linear VF and we focus on the numerical
nalysis of the influence of VF on the peak characteristics in chro-
atography before conclusions are drawn in Section 4.

. Physical model and numerical implementation

We consider the displacement of two viscous and miscible flu-
ds within a chromatographic column. A two-dimensional layer of
iscous fluid 2 of width W (along the flow direction x) is confined
etween two regions of another less viscous fluid 1 (extending
oth upstream and downstream of the fluid 2 zone) in the porous
edium the geometry of which is a rectangular domain of size

x × Ly. Fluid 2 represents the sample and fluid 1 the eluent. The
ample is a solution of an unretained solute of initial concentration

 = c2 in the eluent. The solute concentration in fluid 1 is initially
 = 0. Because mixing will modify the solute concentration c, the
ynamic viscosity � of the sample will evolve as time goes according
o the relationship � = �(c). As usual, the velocity of the flow inside
 porous medium with permeability kp is governed by Darcy’s law:

= − kp
�(c)

∇p (1)
 1218 (2011) 8353– 8361

which relates the two-dimensional velocity v = (vx, vy) to the gradi-
ent of pressure p. vx and vy are the flow velocity components along
the flow direction x and the transverse direction y, respectively.
The flow is assumed to be incompressible (∇  · v = 0). We  have here
assumed that the density of the two fluids is the same to simplify the
problem and avoid further complexity related to possible buoyancy
effects usually negligible in chromatographic applications [19]. The
solute concentration evolves according to an advection-diffusion
equation:

∂c
∂t

+ (v · ∇)c = Dax
∂2
c

∂x2
+ Dtr

∂2
c

∂y2
(2)

where Dax and Dtr are the dispersion coefficients respectively
along and transverse to the flow moving with the mean velocity
u. This characteristic velocity is used to define a typical length
scale Lref = Dax/u and a typical time scale �ref = Dax/u2 needed to
nondimensionalize space and time. We  nondimensionalize as well
velocity components (both by u), the pressure (by �1Dax/kp follow-
ing Darcy’s law), the concentration (by c2) and the viscosity (by �1,
the viscosity of the eluent). From now on, a star superscript will
denote a dimensionless quantity in the rest of the paper. As a con-
sequence, the system is described by the following dimensionless
equations:

∇∗.v∗ = 0, (3)

v∗ = − 1
�∗(c∗)

∇∗p∗ (4)

and

∂c∗

∂t∗
+ (v∗ · ∇∗)c∗ = ∂

2
c∗

∂x∗2
+ �
∂2
c∗

∂y∗2
(5)

where we have introduced the ratio between the coefficients of
dispersion � = Dtr/Dax. Dispersion is isotropic (anisotropic) if � = 1
(� /= 1). In order to get rid of the constant term due to advec-
tion at the mean flow velocity u and to better follow the fingering
dynamics, we move to the Galilean frame of reference moving with
constant speed u by defining x̃ = x − ut, ỹ = y, t̃ = t, ṽ = v − uex
where ex is the unit vector along the mean flow direction x. In
dimensionless units, the Galilean transformations become

x̃∗ = x∗ − t∗, ỹ∗ = y∗, t̃∗ = t∗ (6)

The dimensionless velocity is modified accordingly to

ṽ∗ = v∗ − ex (7)

We get the new system of equations in the moving frame:

∇∗ · ṽ∗ = 0, (8)

ṽ∗ + ex = − 1
�∗(c∗)

∇∗p∗ (9)

and

∂c∗

∂t∗
+ (ṽ∗ · ∇∗)c∗ = ∂

2
c∗

∂x̃∗2
+ �
∂2
c∗

∂ỹ∗2
(10)

Both the pressure and concentration are invariant with respect
to Galilean transformations. Moreover, we recall that, on the basis
of Eqs. (6) and (7),  we have that ∇̃∗

() = ∇∗() and ∂()/∂t∗ = ∂()/∂t∗ +
(ṽ∗ · ∇∗)().

In order to close the system, we  have to introduce the rela-
tionship between the evolving viscosity and concentration of the
solute. Simulations on VF performed by the Physics community are
frequently based on the assumption that the viscosity is an expo-

nential function of the concentration, i.e. �(c) = exp (Rc) where R is
the so-called log–mobility ratio defined as [1,8]:

R = ln
(
�2

�1

)
(11)
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lthough the viscosity of the chromatographic sample/mobile
hase mixture is not always described by such a function, we keep

t because, first, it is a simple law depending on a single parameter
nd, second, this corresponds to the empirical Arrhenius equa-
ion [45] which has sometimes been used to describe the viscosity
ehavior of chromatographic solvent mixtures [46,47]. If R is pos-

tive (as in our simulations), a low viscosity eluent 1 displaces a
igh viscosity sample 2 the rear interface of which is unstable with
espect to VF. In the opposite case, it is the front interface of the
ample which develops fingers. To solve the system of equations
umerically, we eliminate the pressure gradient by taking the curl
f Darcy’s law in the moving frame and by introducing the so-called
imensionless stream function  ̃∗ [10] whose space derivatives
epresent the velocity components:

˜∗
x̃ = ∂ ̃

∗

∂ỹ∗ and ṽ∗
ỹ = −∂ ̃

∗

∂x̃∗ . (12)

e end up with a set of coupled equations for the stream function
nd the concentration:

˜ ∗2
 ̃∗ = −R

(
∂ ̃∗

∂x̃∗
∂c∗

∂x̃∗ + ∂ ̃
∗

∂ỹ∗
∂c∗

∂ỹ∗ + ∂c
∗

∂ỹ∗

)
(13)

nd

∂c∗

∂t̃∗
+ ∂ ̃

∗

∂ỹ∗
∂c∗

∂x̃∗ − ∂ ̃
∗

∂x̃∗
∂c∗

∂ỹ∗ = ∂
2
c∗

∂x̃∗2
+ �
∂2
c∗

∂ỹ∗2
. (14)

We use a pseudo-spectral code developed by Tan and Homsy
10] to integrate the model (13) and (14) on a two-dimensional
omain of integration of size L∗y × L∗x where L∗y = Ly/Lref is the
imensionless width of the porous medium (a control parameter)
nd L∗x = Lx/Lref is the reduced axial length. In these conventions,
∗
x is related to the length of the column while L∗y determines the
umber of fingers present across the domain. Indeed, as the finger-

ng instability gives fingers with a characteristic wavelength �, the
veraged number of fingers observed at onset will be given by the
atio L∗y/�.  The dimensionless length of the sample is l = W/Lref. Ini-
ially, the rectangular sample with concentration c* = 1 of size L∗y × l
s enclosed in the background motionless fluid where c* = 0. For the
urpose of visualization at various times of the VF pattern, which
ccurs on the upward side of the sample, the sample is shifted in
he righter part of the integration domain and extends between
∗
1 = (4L∗x/5 − l) and x∗

2 = 4L∗x/5.
In practice, for the simulations, the initial condition is the fol-

owing:

0(x∗, y∗) = 0 for 0 < x∗ < x∗
1 (15)

0(x∗, y∗) = 0.5 + �r(y∗) at x∗ = x∗
1 (16)

0(x∗, y∗) = 1 for x∗
1 < x∗ < x∗

2 (17)

0(x∗, y∗) = 0.5 + �r(y∗) at x∗ = x∗
2 (18)

0(x∗, y∗) = 0 for x∗
2 < x∗ < L∗x (19)

here � = 0.001 is the amplitude of the random noise r(y*) while
∗
1 and x∗

2 are the initial positions of two back to back step func-
ions between c* = 0 and c* = 1. There are thus two intermediate
ines along y* at x∗

1,2 where a random number r between 0 and
 is added. This noise is necessary to trigger the fingering insta-
ility on reasonable computing time. If � = 0, the numerical noise
ill ultimately seed the fingering instability but on a much longer

ime scale (see [31] for a discussion on the influence of noise on
he fingering pattern). Physically, the random numbers r(y*) relate

o the microscopic noise inherent to any physical system while �
elates to the degree of imperfections in the system. In a perfectly
rdered and regular porous matrix, � would be very small and it
ould hence take time for the microscopic noise to be amplified.
 1218 (2011) 8353– 8361 8355

In a macroscopically disordered system, imperfections correspond
to a larger � susceptible to trigger VF more rapidly. As an example,
Figs. 3 and 4 from the article by Fernandez et al. [22] compare VF
measured experimentally in two columns, one with a quite hetero-
geneous packing (Fig. 3), the other one with a more regular packing
(Fig. 4). VF appears much quicker in the first case which in our sim-
ulations would correspond to a larger �. However, as discussed in
[31] (see Fig. 5 in this article), the amplitude � can slightly shift the
onset time of the instability but no matter how small it is, VF will
ultimately always appear.

The boundary conditions are periodic in both directions. This is
quite standard for the transverse direction ỹ∗. This does not make
any problem along the x̃∗-axis as c* = 0 at both x̃∗ = 0 and x̃∗ = L∗x .
The problem is controlled by four dimensionless parameters: the
log–mobility ratio R, the dimensionless width of the column L∗y,
the initial length of the injected sample l and the ratio between
transverse and longitudinal dispersion coefficients �.

The numerical values of these four parameters are selected in
such a way  that they are representative of typical LC operating con-
ditions. Thus, the column is assumed to be packed with particles
of diameter dp equal to 5 �m and to have an internal diameter dc

equal to 4.6 mm.  The dimensional length W of the initial rectangular
sample zone equals dc/4, which, for a total porosity of 0.7, corre-
sponds to an injection volume of 13.4 �l. The axial reduced plate
height, hax = Hax/dp, where Hax is the classical plate height describ-
ing dispersion along the column axis, is assumed to be related to
the reduced velocity, �, through the Knox semi-empirical equation
[48]:

hax = B

�
+ A�1/3 + C� (20)

where A, B and C are dimensionless constants. The reduced velocity
� is defined as [49]:

� = udp
Dm

(21)

where Dm is the solute molecular diffusion coefficient in the elu-
ent, assumed equal to 0.5 × 10−5 cm2 s−1. The transverse reduced
plate height, htr = Htr/dp, where Htr is the transverse plate height
defined as the rate of increase of the transverse variance of the
concentration profile with axial distance migrated, is given by [50]:

htr = D

�
+ E. (22)

The values of the dimensionless plate height coefficients are here
selected equal to: A = 1, B = 1.8, C = 0.01, D = 1.4, E = 0.06. For compar-
ison purposes, these typical values are the same as those selected
and discussed in our previous publication on the linear stability
analysis [19]. Because of the periodicity of the boundary condi-
tions, the numerical code is most efficient when the dimensionless
quantities L∗y and L∗x are multiples of prime numbers. Consequently,
computations are performed by selecting ten values of L∗y fulfill-
ing this condition and for which the corresponding flow rate lies
between 0.5 and 2.5 cm3 min−1. In practice, we take thus L∗y from
512 to 820, i.e. explicitly 512, 528, 548, 576, 600, 628, 672, 720,
768, 820 hence l from 128 to 205. Therefore, since L∗y = dc/Lref ,
the corresponding values of Lref were calculated as dc/L∗y. Noting
that Lref = Dax/u = Hax/2 = haxdp/2, the corresponding value of � was
obtained by solving Eq. (20) for �, knowing that hax = 2Lref /dp =
2dc/(L∗ydp). The axial velocity u which does not appear explicitly as a
control parameter in the model, influences nevertheless the results
because it implicitly affects the reference length which is equal to

half the axial plate height [19]. This axial velocity u is obtained from
� using Eq. (21) and ranges typically from 0.330 to 0.018 cm/s for
L∗y from 512 to 820. The knowledge of � further allows to calculate
htr from Eq. (22) from which the dispersion ratio � equal to htr/hax
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Fig. 1. Temporal evolution of nonlinear viscous fingering for a finite sample dis-
placed from left to right by a less viscous flow. Density plots of concentration are
shown at successive times from bottom to top in the frame moving at the injection
356 G. Rousseaux et al. / J. Chroma

s computed. Although this parameter is rarely used in chromatog-
aphy, it plays a significant role in the evolution of the VF pattern
s will be seen in the next section. In practice, chromatographic
olumns are operated at quite low dispersion ratios. This � ratio
ecreases with increasing �. For the above range of values of L∗y, �

ies between 0.028 and 0.115.

. Non-linear dynamics of viscous fingering and influence
n output peaks

.1. Linear vs. nonlinear approaches

Before describing the results of our numerical integration of
odel (13) and (14), it is useful to recall the difference between

he information obtained from linear stability analysis as done in
ef. [19] and those gathered by studying the nonlinear dynamics
s done here. When a hydrodynamic instability affects an interface
uch as in the here studied viscous fingering case, this results from
he amplification by a destabilizing mechanism (the unfavorable
iscosity ratio here) of small perturbations affecting the base state
lanar interface. These perturbations grow exponentially to con-
uct the system out of the unstable initial base state into the well
eveloped unstable regime. As long as the perturbations ız of any
ariable z are small enough, all nonlinear terms of the evolution
quations (for instance terms in ız2) are negligible and the growth
f the perturbations is well described by equations linearized in
z. This fixes the so-called “linear regime” in which perturbations
re amplified exponentially. Analysis of this regime [19] provides
nformation on the conditions to get instability and on the influ-
nce of the parameters on the onset time of the pattern and on
ts wavelength. Linear stability analysis cannot however give infor-

ation on the long term evolution of the pattern dominated by the
onlinear interactions taking over when the perturbations become

arge enough for the nonlinearities of the equations to excite har-
onics, etc. Nonlinear dynamics must then typically be studied by

xperiments or nonlinear simulations like done here.

.2. Two-dimensional nonlinear dynamics

We display in Fig. 1 the nonlinear evolution in time of a finite
and of a viscous sample pushed from left to right by a less viscous
iscible displacing fluid also initially filling the chromatographic

olumn. As we are interested in the long-time behavior in order to
xamine the effects of non-linearities, we do not display the rel-
vant pictures associated with the linear growth of the instability
hich has been analyzed by linear stability analysis in [19]. The
ensity plots of solute concentration are such that the maximum
f dimensionless concentration c∗max corresponds to black whereas
* = 0 corresponds to white and intermediate values to grey levels.
f course, as the sample is diluted in the course of time both because
f dispersion and fingering, the maximum value of concentration
ecreases (see also Fig. 2) so that the black zones at successive times

n Fig. 1 correspond to decreasing values of c∗max. Such a grey scale
s used in order to amplify and track the fingers in the asymptotic
egime. Note that Fig. 1 is shown in a frame moving with speed u.
f u is increased, the view will thus be analogous however viscous
ngering will be more intense as the system is more unstable when
he injection speed is increased [8].

In Fig. 1, one clearly notices the appearance of several fingers
hich develop on the rear interface. At early times, fingers develop

n both upstream and downstream directions around the unsta-

le interface but as soon as the fingers traveling forward meet
he frontal stable interface, reverse fingering is privileged [40].
ndeed, the frontal interface of the sample where the more vis-
ous sample displaces the less viscous eluent is stable. It expands
speed u. Each picture is separated by 5000 units of dimensionless time, which corre-
sponds to 31.9 s. Parameters are: R = 2, L∗

y = 768, u = 0.094 cm/s, l = 192, �= 0.08722.
The aspect ratio is preserved.

only because of molecular diffusion and dispersion and remains
planar until fingering of the rear interface is catching it. This stable
barrier later on prevents the fingers from developing further down-
stream. Fig. 1 shows evidences of typical nonlinear events that have
been described in details before [1,10,12,13]. First of all fading typi-
cally occurs when one finger is slightly ahead of a neighboring one.
Because of the two flow vortices which accompany each finger head
[44], the neighboring finger encounters an opposing flow created by
the leading finger which hinders its growth. Hence, the neighbor-
ing finger is fading in time. This dynamics is favoring merging which
occurs when one finger prefers to follow the slow resistance path
set up by a neighboring finger rather than to act against the oppos-
ing flow created by it. Such fading and merging are clearly seen on
panels 3–7 (from the bottom) from Fig. 1. Another nonlinear typical
dynamics is splitting of fingers. This occurs when fingers have grown
enough so that their tip is sufficiently large for the VF instability to
operate again and split them into two. Such mechanisms are not
encountered here in our simulations which use a too small lateral
domain for this tip splitting to set in but have been experimentally
[1,7] and numerically [10] described in details previously.

In Fig. 1, the combination of fading and merging leads eventually
for the set of parameters used here to one single final finger. As

a result, the frontal interface is now crossed by a stream of less
viscous fluid. In this asymptotic dynamics, the growth of the mixing
zone becomes dispersive again as has been discussed previously
[31].
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ig. 2. Influence of viscous fingering on the peak broadening: (top) VF of Fig. 1 at t*
unction of space for different dimensionless times (up to 60,000); (bottom) transv

.3. Influence of viscous fingering on characteristics of 1D output
eaks

Is it possible to identify the appearance of viscous fingers only
y looking at 1D averaged concentration profiles? This is crucial as,

n all opaque columns, information on the internal dynamics have
o be inferred from 1D profiles resulting from averages across the
olumn width and measured by detectors at given positions along
he column [11,17] or at the exit of it. We  will now describe some
uantities which can be related to those 1D averaged measures
51] and discuss how they correlate to the properties of nonlinear
ngering.

As the 1D averaged profiles provide information on the integral
f the concentration along the transverse cross-section of the col-
mn as a function of time, we first have to perform an averaging
rocedure of our numerical concentration field on the width of the
ample. As a consequence, we plot in Fig. 2 the transverse aver-
ged profile of the sample concentration at successive times t as a
unction of the longitudinal coordinate x in the frame of reference

oving at the mean velocity u of the carrier fluid. This transverse
veraged profile is defined according to the formula:

∗ ∗ ∗ 1
∫ L∗y

∗ ∗ ∗ ∗ ∗
(x̃ , t ) =
L∗y 0

c (x̃ , y , t )dy . (23)

One notices clearly in Fig. 2(b), which displays c(x̃∗, t∗) as a
unction of time, the stable forward front characterized by the
00; (middle) Corresponding transverse averaged profiles of the concentration as a
eraged profile at t* = 0 and t* = 15,000.

dispersion effect and the rear front which is unstable with regard to
VF. The presence of fingers in the column is witnessed on the trans-
verse averaged profile by the presence of bumps, a broadening of
the concentration peak in time along with a shift of the center of
mass of the sample in the direction reverse to the mean flow, indi-
cating that this center of mass does not move along the column as
fast as the carrier liquid.

A goal of this work is to investigate the long time contribu-
tion to the peak deformation due to the non-linear evolution of
viscous fingering for a sample slice moving within a less viscous elu-
ent. Hence, the asymptotic value of the variance associated to the
concentration is fundamental in order to characterize the broad-
ening of the initial slice [31,32,36,38]. Moreover, as the latter has
a finite extension, it is of particular interest to study how fast axial
dispersion in the chromatographic column is smoothing out the
fingering instability. Indeed, if the transit time across the column
is long, axial dispersion has a long time to dilute the sample in
the x direction and thus to oppose to VF before the exit of the
column.

To do so, we compute the two first moments of the concentra-
tion distribution: the dimensional first moment m (which has the
dimension of a length), defined as
m(t) =
∫ L

0
c(x, t)xdx∫ L

0
c(x, t)dx

, (24)
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ig. 3. Two first moments of the distribution in function of time for the simulation
f  Fig. 1: (top) mean position m of the center of mass; (bottom) variance.

s the position of the center of mass of the distribution as a function
f time. In order to compare this position with that, m0, that a zone
nperturbed by VF would have, we subtract m0 to it. Fig. 3(a) shows
he evolution of the center of mass for the simulation of Fig. 1. The
volution is shown here in dimensional quantities in order to com-
are with the length of typical columns we consider (15 and 25 cm).
o switch back from the dimensionless first moments computed on
rofiles of Fig. 2 using definition (24) to dimensional quantities, we
se the characteristic time and length, tref and Lref, computed as

ndicated at the end of Section 2. For the selected value of L∗y = 768,
his corresponds to a flow velocity of 0.094 cm/s, giving a reference
ength of 6.0 �m and a reference time of 6.4 ms.

In Fig. 3(a), the mean position of the center of mass is lower than
hat of a zone unperturbed by VF and their difference increases as

 function of time. Hence, the distribution is going backward as
he fingers are developing in the direction opposite to the mean
ow. The advancing front somehow stabilizes the rear front since

t avoids the fingers to grow in the flow direction. Hence, reverse
ngering develops from the back interface.

The second dimensional moment of the c(x, t) distribution is the
otal variance 	2

T

2
T (t) =

∫ L
0
c(x, t)[x − m(t)]2dx∫ L

0
c(x, t)dx

(25)

iving information on the width of the distribution (in cm2).
ig. 3(b) shows the temporal evolution of the dimensional total

ariance for the nonlinear simulation of Fig. 1. The total variance
2
T is actually the sum of three contributions:

2
T (t) = 	2

i + 	2
d + 	2

VF , (26)
Fig. 4. Number of plates occupied by the viscous fingering contribution to the zone
standard deviation along the chromatographic column as a function of time.

where 	2
i

= W2/12 is the variance due to the initial width of the
sample, 	2

d
= 2Daxt is the contribution of dispersion and 	2

VF is the
contribution due to the fingering phenomenon. To understand the
importance of VF on the broadening of the peaks, we isolate the
temporal evolution of 	VF defined as

	VF =
√
	2
T − 	2

i
− 	2

d
. (27)

In order to better visualize the importance of the VF contribution to
peak broadening, this axial contribution 	VF is plotted in Fig. 4 vs.
time in terms of the axial plate height, Hax. Hence, the ordinate of
Fig. 4 represents the number of plates occupied by this VF standard
deviation. It increases quickly at early times, then less quickly as
time goes by, until it eventually reaches a plateau value for longer
times (exceeding 400 s).

3.4. Statistically averaged quantities

It is now clear that measurements of the moments of 1D aver-
aged concentrations distributions can be related to the properties
of VF. It is however important to realize that any such quantita-
tive measures will have to imply statistical averages on several
experiments performed in the same conditions. Indeed, as already
evidenced numerically in the past [31] and shown recently exper-
imentally [35], even if the fingering pattern is quite reproducible
at onset, the nonlinear evolution and interaction of fingers greatly
depends on the noise in the system. At onset, the wavelength of the
pattern is the one of the most unstable mode given by the linear
stability analysis [19]. At later times, the nonlinearities of the evo-
lution equations excite the harmonics of this mode and of all other
unstable modes so that a whole band of unstable modes start to
interact. The corresponding dynamics is of course very sensitive to
the initial noise.

In order to demonstrate the influence of noise realization on
the temporal evolution of viscous fingering, we show in Fig. 5 den-
sity plots of concentration for exactly the same parameters as in
Fig. 1. Each condition is the same, the only difference is in the
realization of random numbers r(y*) used to seed the initial condi-
tion (15)–(19) in the simulation. In other words, the amplitude � of
the noise is identical but it is only the values of the random num-
bers in the realization r(y*) which is different. We  clearly observe
in Fig. 5 that, at the same final time of 60,000, we have now two
fingers instead of the final single finger of Fig. 1. In addition, we

remark here the creation and the detachment of a drop of more
viscous fluid in the rear at 10, 000 units of times, a feature absent in
Fig. 1. Hence, noise has a drastic influence on the initiation and
evolution of the instability associated to viscous fingering. This
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Fig. 5. Same as Fig. 1. All values of parameters are the same, the only difference
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Fig. 6. Standard deviation rescaled by the column length as a function of the
dimensional mean velocity u. The “error bars” correspond to the range of variances
obtained for different noise realizations with identical amplitude. The parameters
s  a different initial noise with identical amplitude � but a different set of random
umbers r(y*) in the initial condition (15)–(19).

andom generation of noise which initiates the development of the
F instability reflects the various uncontrolled sources, internal or
xternal to the column itself, which, in practice, trigger this insta-
ility. As a consequence, the temporal evolution of the variance will
epend on the specific realization of the experiment. Any quanti-
ative information on parametric dependence of the influence of
F on this variance will therefore require the computations of an
veraged variance obtained by averaging on different realizations
or the same operating conditions.

.5. Parametric study

To do so, we have performed for each set of values of the simula-
ion parameters (R, L∗y, l, �), 15 different simulations starting from
n initial condition where the amplitude � of the noise is the same
ut the realization r is each time different. From there we compute
he average value 〈	VF〉 [31] which we will now analyze comparing
wo chromatographic columns with different typical lengths Lc (15
nd 25 cm).

For each realization of a given set of the simulations parame-
ers, the variance of the spatial distribution of the concentration is
omputed at the dimensionless time t* corresponding to the hold-
p time, Lc/u, i.e. at t* = 2Lc/Hax = 2N, where N is the column plate
umber in absence of VF. The VF contribution 	VF to the standard

eviation of the elution peak is then extracted from this variance
y means of Eq. (27). In Fig. 6, the average, 〈	VF〉, of the resulting
tandard deviations obtained for the fifteen realizations of a given
et of simulation parameters at the elution time is rescaled by the
are obtained as described in the text. The dots and squares correspond to a column
with total length 15 cm and 25 cm respectively.

column length Lc and plotted as a function of the flow velocity. The
upper and lower data correspond to column lengths of 15 cm and
25 cm, respectively. It should be noted that the rescaling of the VF
standard deviation by Lc is just performed to express it in an eas-
ily visualized way, not to imply that it would correspond to some
universal normalization.

It is seen that the VF contribution to the peak standard devia-
tion increases only slightly with increasing flow rate. This might
appear to be reminiscent of the fact that the maximum growth rate
of the VF instability was  found to increase with increasing flow
velocity in its linear regime [19]. However, such a conclusion is not
trivial, first because the development of the fingers in the column
occurs mostly in the nonlinear regime, and second, because the
larger the flow velocity, the shorter the time allowed to the VF insta-
bility to develop before reaching the column outlet. Nevertheless,
the extent of this VF contribution to the peak standard deviation is
quite significant and reaches about 4.5% and 3.5% of the length for
the short (15 cm)  and long (25 cm)  columns, respectively. For the
sake of comparison, the injection contribution 	i to the standard
deviation is respectively 0.22% and 0.13%, while that of the normal
dispersion process 	d ranges between 0.83% and 1.09% in the veloc-
ity interval covered in Fig. 6 for the short column and between 0.64%
and 0.85% for the long column. The error bars reported in Fig. 6 cor-
respond to the standard deviation of the variations of 	VF for the
various realizations. Its relative value lies between 10% and 15%.

Furthermore, whatever the flow velocity, the VF contribution
to the peak standard deviation relative to the column length is
observed to be larger for the short column than for the long one. This
indicates that, whatever the selected flow velocity, the VF standard
deviation grows less rapidly than the column length (and hence
than the elapsed time), as reflected by Fig. 4.

One of the key parameters controlling the development of the
VF instability is the ratio between transverse and axial dispersion
coefficients, �, i.e. the ratio of the transverse and axial plate heights.
This parameter is usually not determined in chromatography as it
does not significantly affect the separation performance. However,
compared to other situations involving flow in a porous medium,
a peculiarity of modern liquid chromatography is that this ratio
is quite small. As this ratio is a monotonic decreasing function of
the reduced velocity, the data 〈	VF 〉/Lc of Fig. 6 are plotted vs. �
in Fig. 7. The average VF contribution to the peak standard devi-

ation is seen to be a decreasing quasi-linear function of �. On a
physical ground, this reflects the fact that the development of the
VF instability is dampened when transverse mixing is enhanced,



8360 G. Rousseaux et al. / J. Chromatogr. A

Fig. 7. Standard deviation rescaled by the column length as a function of the ratio
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[36] R.A. Shalliker, G. Guiochon, J. Chromatogr. A 1216 (2009) 787.
etween transverse and axial dispersion coefficients �. Symbols are the same as in
ig. 6.

ompared to longitudinal mixing, resulting in an enhanced merging
f neighbor fingers.

. Conclusion

We have here summarized the various properties of nonlinear
ngering of finite width samples in the context of chromatographic
pplications and shown numerically how useful quantitative data
an be extracted from experiments. We  have in particular shown
hat a useful measure is 〈	VF(t)〉, the ensemble average contribution
f VF to the standard deviation of the transverse averaged concen-
ration profiles. Typically this quantity gives the contribution of VF
n peak broadening in time. We  have shown that this broadening
s a slightly increasing function of the flow velocity but a decreas-
ng function of �, the ratio between transverse and axial dispersion
oefficients.

One could argue that the quantities measured here will be of
o use in the case of chromatographic data such as those shown

n [21–25,29,30,33–35,37] because their pictures are 2D visualiza-
ions of a full 3D dynamics. Zimmerman and Homsy have compared
ransverse averaged quantities of respectively 2D and full 3D simu-
ations of VF showing that the averaged quantities remain the same
13]. In that regard, a welcome experimental work would be to com-
are statistical moments of the 1D transverse averaged profiles as
efined in this work of a full 3D experimental dynamics in a col-
mn  to those of 2D pictures of it in the same experiment. This would
llow to check whether the equivalence of averaged properties of
D vs. 3D numerical data remains valid for experimental ones.

Our analysis has furthermore emphasized the switch from
imensionless quantities such as those obtained from nonlinear
imulations to dimensional quantities to be compared to experi-
ents. The key experimental parameters that are required for this

urpose are the geometrical dimensions of the column (length and
nternal diameter), the dispersion ratio or ratio of transverse to
xial plate height (which itself depends on the flow velocity, par-
icle diameter, molecular diffusion coefficient and coefficients of
ransverse and axial plate height curves) and the sample-to-mobile
hase viscosity ratio (rather than their viscosity difference). The
witch to dimensional quantities has proven to be of peculiar inter-
st to understand the influence of the injection speed u on VF. As
his mean displacement velocity is implicitly hidden within the
haracteristic length Lref and time �ref needed to nondimensionalize

he problem, it is hard to appreciate its influence on the spread-
ng of peaks in dimensionless units. Switching back to dimensional
nits has allowed here to show explicitly (see Fig. 6) that the VF

[
[

[

 1218 (2011) 8353– 8361

contribution to the increase of the standard deviation of the output
peaks varies only slightly with the injection speed u.

The present simulations have been performed under the
assumption that the viscosity of the sample and mobile phase mix-
ture is a monotonic function of the composition, characterized by a
constant value of R. Work is in progress for handling mixtures which
exhibit an extremum in their viscosity vs. composition curves lead-
ing to non-monotonic viscosity profiles [52]. The goal is to approach
the situation of methanol–water or acetonitrile–water mixtures
frequently encountered in reverse phase liquid chromatography
and in hydrophilic interaction liquid chromatography (HILIC). Fur-
thermore, the present simulations correspond to isocratic elution
conditions. The influence of viscous fingering in gradient elution
conditions will be the topic of a future publication. Note that the
medium has here also been considered as homogeneous. Analysis
of the influence of heterogeneities [53] could as well be the topics
of future studies.
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