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bstract

When a fluid is displaced by a less viscous one in a porous medium, a hydrodynamic instability appears leading to the formation of some kind
f fingers of the upstream fluid invading the downstream one, hence the name “viscous fingering” (VF) given to this instability. In a LC column,
uch an instability is likely to appear at that of the two interfaces between the sample and the eluent which exhibits an unfavorable viscosity
ontrast. It leads to distorted peak shapes and contributes to peak broadening. This phenomenon has been observed for long in SEC and more
ecently in RPLC on elution peak shapes as well as with various methods of in-column visualization. A simplistic LC column model is described
o explain the origin of the VF instability and its characteristics. The general principles for analyzing hydrodynamic instabilities are described and
he results of the linear stability analysis performed by Tan and Homsy [C.T. Tan, G.M. Homsy, Phys. Fluids 29 (1986) 3549 [1]], at the onset
f the VF phenomenon for a step interface between two fluids are here applied to typical operating conditions encountered in analytical LC. The
ost probable growth rate and wavelength (linked to the finger width) of the instability are given in terms of particle size and solute diffusion

oefficient, with particular emphasis on the role of the carrier velocity. Previously published qualitative observations about VF in chromatography

re examined and interpreted at the light of this theory. The role of the column geometry on the development of the instability, the possible sources
f noise or fluctuations triggering the instability, and the various experimental situations in which a significant viscosity contrast is encountered in
C are discussed.
2007 Elsevier B.V. All rights reserved.
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. Introduction

According to the Giddings’ classification of separation meth-
ds, chromatography, as well as field-flow fractionation, belong
o the F(+) group. In methods of this group, the slight enrichment
f one component with respect to the other sample components
n the direction of the chemical potential gradient created by
field or an interface is considerably amplified by the flow of

carrier fluid in a direction essentially perpendicular to that

f the chemical potential gradient [2]. The flow does not con-
ribute to the separation selectivity by itself. However, because
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t allows the slight enrichment step to be repeated many times in
cascade-like manner, the carrier flow is an essential ingredient
f the separation process. The characteristics of this carrier flow
ave thus a profound impact on the efficiency of the separation.

Generally, separation scientists and chromatographers con-
ider the flow of carrier fluid as being basically stable, i.e.
ithout irregularities in time and in space (except for axial
elocity variations arising from fluid compressibility in gas and
upercritical fluid chromatography, and, to a lesser extent, in
ltra-high pressure liquid chromatography). Most often, they
ven do not suspect that the flow may not be stable. Still, nearly
ll modern studies in fluid mechanics are dealing with investiga-

ions of flow instabilities arising in many situations, under certain
onditions. It is thus of utmost importance to understand the pro-
ess of development of the instabilities, to specify under which
xperimental conditions the flow of carrier fluid in the separation
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dx.doi.org/10.1016/j.chroma.2007.03.056
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onduit can be stable, and to be able to evaluate quantitatively
he influence of the instabilities on the separation performances.
ndeed, if this flow is unstable, it is likely to be detrimental to the
eparation efficiency (Giddings then spoke of “parasitic flow”
2]).

One potential source of concern for the development of flow
nstabilities in chromatography arises from the fact that the fluids
isplaced in the chromatographic system have generally differ-
nt viscosities. This is true when a liquid chromatographic run is
erformed under gradient elution conditions since the viscosity
f the carrier mixture is a function of its composition [3]. But
ven in isocratic conditions, the viscosity of the sample injected
n the column is most often different from that of the carrier liq-
id. The difference in viscosity between two fluids (the carrier
iquid and the sample) may be the source of a viscous fingering
nstability. Indeed, viscous fingering occurs as soon as one fluid
isplaces another more viscous one inside a porous medium.
he initially planar interface starts then to deform as “fingers”
f one fluid invading the other one, hence the word “fingering”
sed to describe the phenomenon.

That the interface between two liquids may be deformed
hen they flow through a porous medium was first noticed by
ill who observed a phenomenon that he called “channelling”
uring the displacement of sugar solutions by water in a packed
olumn [4]. The stability of the interface between two non-
iscible fluids was later studied by Saffman and Taylor [5]

nd the viscous fingering instability between immiscible liq-
ids is frequently called today the “Saffman–Taylor instability”,
lthough the phenomenon should have been called the “Hill
nstability” from a historical perspective according to Homsy
6]. Saffman and Taylor investigated the shapes and dynam-
cs of the fingers obtained in a so-called Hele–Shaw cell, after
he system devised by this author [7], i.e. the channel obtained
etween two fixed parallel plates separated by a small distance
8]. Indeed, it can be shown that the motion in a Hele–Shaw cell
s mathematically analogous to the two-dimensional flow in a
orous medium [5,9a].

The viscous fingering instability typically occurs when water
isplaces petroleum in underground reservoirs which explains
hy experimental and theoretical studies on viscous fingering
ave appeared mainly in the petroleum engineering and physics
iterature [6]. Still, in chromatography, the first experimental
vidence of the perturbations on the peak characteristics (mod-
fied retention time, increased band broadening and distorted
eak shape) arising from a high sample viscosity is found in the
ork of Flodin on the desalting of proteins by means of the gel
ltration version of size exclusion chromatography (SEC) [10].
hile later SEC studies reported perturbations due to sample

oncentration effects, Flodin clearly noticed that “the viscosity
f the sample rather than the concentration is the limiting fac-
or”. Still, the origin of the perturbations was believed to arise
n part from the enhanced compression of the relatively soft
ed used at that time in gel filtration chromatography while the

iscous sample zone traveled along the column. The first men-
ion of viscous fingering (VF) in chromatography is found in a
hapter by Altgelt and Moore [11]. They wrote that “the more
brupt the viscosity change at the rear boundary of the sam-
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le zone, the less stable that boundary becomes” and that “the
xtra pressure drop caused by sample viscosity then permits the
olvent to push through at some weak point, and the liquid veloc-
ty profile becomes very uneven until considerable spreadout
as occurred” after some studies of fluid flow in packed beds.
lthough these studies were then not referenced, Moore later
ade reference to Collins’ book [12] in connection to the fact

hat “the pattern of erratic delay (of the chromatographic peaks)
s indicative of viscous fingering” [13]. Clearly, the phenomenon
s attributed to flow effects rather than to packing effects. In
pite of the fact that, in the early 70’s, it is reported that “con-
iderable qualitative discussion has taken place in recent years
oncerning the so-called viscous fingering effect” in SEC [14],
nly a few brief mentions of VF are found in the chromato-
raphic literature of that period, with, at best, a reproduction of
he description found in the above-mentioned chapter by Alt-
elt and Moore [14–18]. Besides, several studies showed the
nfluence of the polymer sample viscosity or concentration in
EC on retention and peak shape that can be attributed to VF
19–22]. In the late 70s and in the 80s, various studies were
erformed on the influence of the polymer sample concentra-
ion on the mean elution volume in SEC columns [23–27]. They
urther illustrated that the variations of retention and the distor-
ion of the peak shapes arising from the viscosity effect occur
n the interstitial volume of the porous bed and confirmed that
he significant factor controlling the phenomenon is the relative
iscosity difference between the sample solution and the elu-
nt. However, they showed, as already noticed earlier [14], that
F cannot be wholly responsible for the change in elution vol-
me and that other effects, like concentration-induced change
n macromolecular dimensions, are simultaneously occurring in
EC of polymers. Still, contradictory conclusions were derived
bout the relative importance of the various concentration effects
28,29]. Nevertheless, a rough guide was that the sample vis-
osity should not be greater than twice that of the carrier liquid,
oth in classical fixed cylindrical packed columns [30a,31] and
n annular rotating chromatographic beds [32].

In all experiments described above, except those of Flodin,
he chromatographic peaks which were distorted because of the
F phenomenon were those of substances which were directly

ausing the enhancement of the sample viscosity well above that
f the eluent. They were in these cases macromolecular sub-
tances present at a relatively large concentration in the sample.
n Flodin experiments [10], the sample viscosity was controlled
y means of the concentration of dextran while the distorted
eaks were those of other sample substances (haemoglobin or
odium chloride) present at relatively low concentrations. Simi-
arly, Czok et al. [33] performed SEC experiments in which the
iscosities of either the protein sample or the aqueous carrier
r both were modified by means of various concentrations of
lycerol. Peak distortion appeared on the tailing edge when the
ample was more viscous than the carrier, and on the leading
dge in the opposite case. In the former case, they could limit

he distortion by injecting a plug of viscous eluent immediately
ollowing sample injection. For the first time, they noticed that
he distorded peak shapes were not reproducible. Comparable
xperiments were later performed by Cherrak et al. [34] who also
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bserved the irreproducibility of the toluene peak shapes when
he carrier liquid and the sample solvent had different concen-
rations of isopropanol in methanol. They noticed a significant
oss of efficiency when the eluent and sample viscosity dif-
ered by more than 10%. Peak distortions of either unretained or
etained analytes arising from the viscosity difference between
ample and eluent have also been observed and investigated in
eversed-phase liquid chromatography with water–acetonitrile
r water–alcohol (isopropanol or methanol) mixtures by Castells
nd coworkers [35–37]. Again, the position of the peak maxima
nd shoulders appeared irreproducible.

Further evidence of fingering in chromatographic columns
s provided by visualization experiments. Altgelt noticed he
bserved fingering arising from steep density gradients by means
f colored samples [38]. Examining the shapes of protein zones
y slicing frozen gel beds, Yamamoto et al. [27] found a wide
preading of the sample zone in the radial and longitudinal direc-
ions. Visualization, by NMR imaging, of solutions containing
gadolinium complex or of proteins chelating the gadolinium

on inside the porous medium allowed to follow the dynamics of
iscous fingers along a SEC column and their three-dimensional
tructure [39,40]. Interestingly, in spite of the limited resolution
f the imaging system, Plante et al. [39] observed some finger
ormation near the column inlet for moderate protein concen-
rations while the chromatographic peak recorded at the column
utlet has a symmetrical Gaussian-like shape which does not
llow to suspect that some perturbations occurred inside the
olumn. Still such perturbations necessarily have contributed to
nhance the peak broadening. This additional band broadening
an be falsely attributed to another zone dispersion mechanism
nd erroneous conclusions can be derived about the latter. Peak
istortion appear on the tailing edge at larger sample concen-
rations. This NMR imaging technique was used to investigate
he effects of the permeability heterogeneity on VF [41], and to
esign flow distributors and column configurations for reducing
his perturbing phenomena [42,43]. Using an alternative NMR
maging technique, the simultaneous visualization of the effect
f VF on the migration of several, differently retained, sample
omponents was rendered possible [44].

Recently, by matching the refractive indices of the mobile
hase, the stationary phase and the bed container, Broyles et al.
45] developed an optical method allowing to visualize, with
he eye or a photographic detector, the migration of a colored
ample component in a chromatographic column. In particular,
his approach was used to visualize the development of viscous
ngers with a resolution that appears superior to that of the
MR images. The influence of the column header design was

nvestigated by this method [46], as well as the onset of VF
n the chromatographic column [47]. The effect of VF arising
rom the change of carrier liquids (made of methanol/water or
cetonitrile/water mixtures of various compositions) in multi-
imensional reversed-phase liquid chromatography on analyte
eak shapes was emulated by injecting analytes dissolved in the

rst dimension carrier into the chromatographic system of the
econd dimension [48].

In spite of the number of articles cited above, the chromato-
raphic community is largely unaware of the VF phenomenon
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nd of its potentially harmful effects for the separation perfor-
ances. Furthermore, apart from an expression of the fastest

rowing finger wavelength found in papers by Fernandez and
oworkers [39,42,44,49], all other descriptions of VF in chro-
atography are essentially qualitative or phenomenological and

o not contain any theoretical background of the phenomenon.
n this context, it is the objective of this article to discuss the
roperties of VF in chromatographic columns from a theoretical
erspective, to analyze in which conditions this instability is to
e expected, and what will then its characteristics be. Using the
inear stability approach developed by Tan and Homsy [1], we
how how a simple model of viscous fingering between two mis-
ible fluids of different viscosities can provide information on
he typical length and time scales of the fingering pattern appear-
ng at the onset of the instability. While the results of such a linear
tability analysis are frequently presented in the fluid mechanics
iterature by means of dimensionless quantities, we extend them
nd show how they rely on relevant chromatographic quanti-
ies, such as carrier velocity, particle size and solute diffusion
oefficient. A discussion of experimental results available in
hromatography in terms of our theoretical predictions is also
rovided.

The outline of the article is therefore organized as fol-
ows: Section 2 will first recall the physical mechanisms and
mportant parameters related to the hydrodynamic fingering
nstability. Section 3 will introduce the theoretical model to
e used to describe the fingering properties, recall the prin-
iples of a linear stability analysis (LSA) and discuss the
ispersion relation curves. Explanations on physical informa-
ions that can be obtained from such a LSA will be given
n that section as well. Concrete applications to the case of
hromatographic columns will be discussed in Section 4 with
articular emphasis on the role of the carrier velocity. In Sec-
ion 5, the effect of the evolution of the profile of the interface
n the characteristics of the VF pattern, the role of the column
eometry, the origin of the noise triggering the instability are
iscussed. Previously published qualitative observations about
F in chromatography are examined and interpreted at the

ight of this theory, and the various experimental situations
n which a significant viscosity contrast is encountered in LC
re discussed in Section 5 before conclusions are drawn in
ection 6.

. Physical mechanism of viscous fingering

To understand the origin of the viscous fingering phenomenon
n porous media, we present below a simple model mak-
ng use of flow equations classically used in packed column
hromatography. To give more generality to the derived conclu-
ions, we also consider the hydrostatic pressure contribution
o flow. Although this contribution to the mean flow veloc-
ty is usually negligible in modern liquid chromatography, it
as to be discussed in which conditions its contribution to

he hydrodynamic instabilities, which gives rise to the density
ngering phenomenon already observed in early SEC experi-
ents [38], is negligible compared to that leading to viscous
ngering.
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Fig. 1. Schematic illustration of a perturbation of the interface between two
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uids in a packed column, pushing the upstream liquid 2 in a small part (B) of
he column cross-section ahead of the position of the interface in the main part
A) of the cross-section.

.1. Simple model of flow instability

Let us consider a packed column of length Lc initially filled
ith a liquid 1 of viscosity η1. A constant pressure pump is
elivering a liquid 2 of viscosity η2, which is displacing the
ownstream fluid 1. Let �P be the constant pressure drop
pplied along the column. When the hydrostatic contribution
o the pressure drop is included, the basic flow equation for

porous medium containing a single fluid of viscosity η and
ensity ρ is then expressed as, [50]:

= kp

η

(
−dP

dz
+ ρδg

)
= kp

η

(
Pin − Pout

Lc
+ ρδg

)
(1)

here Pin and Pout are the inlet and outlet applied pressures,
espectively, kp the column permeability (assumed to be constant
hroughout the whole column), g the gravitational acceleration
nd δ an indicator for the flow orientation equal to +1 for down-
ard vertical flow, −1 for upward vertical flow, 0 for a horizontal

olumn, and taking intermediate values for tilted columns. Obvi-
usly, for a horizontal column, there is no hydrostatic pressure
nd only VF instabilities can appear in the column. The latter
quality in Eq. (1) assumes that the fluid is incompressible.

Let us now assume that, when the interface between the two
uids is at position z along the column, a perturbation is displac-

ng the interface ahead of (or behind) that position in a small part
B) of the column cross-section. This perturbation is schemati-
ally represented in Fig. 1, the interface is at position z + δz in the
erturbed section B, and at position z in the main, unperturbed
ection A. For each section (A and B), considering the liquids
s incompressible, the velocity of liquid 1 is the same as that
f liquid 2, but the flow velocity, uA, in section A is different
rom that, uB, in section B. In this simple flow model, let us fur-
hermore assume that there is no momentum exchange between
ections A and B, hence that the flow velocity in section B is
ndependent of that in section A.

When a fluid 2 is displacing a fluid 1 in the porous bed, a
ow instability may arise from the viscosity difference, but also
rom the density difference when the upper fluid is denser than

he lower fluid. The hydrodynamic instability arising from an
nfavorable density gradient between two immiscible fluids is
alled the Rayleigh–Taylor instability. To derive the stability
riterion when both viscosity and density instabilities come in
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nterplay, let apply Eq. (1) for the two fluids in part A of the
olumn cross-section shown in Fig. 1:

A = kp

η2

(
Pin − Pz

z
+ ρ2δg

)
= kp

η1

(
Pz − Pout

Lc − z
+ ρ1δg

)
(2)

rom which one gets, noting that �P = Pin − Pout = (Pin − Pz) +
Pz − Pout):

�P

Lc
+ δg

[
ρ2

z

Lc
+ ρ1

(
1 − z

Lc

)]

= uA

kp

[
η2

z

Lc
+ η1

(
1 − z

Lc

)]
(3)

or the perturbed section B of the column cross-section, one
ets, by replacing uA by uB and z by z + δz in Eq. (2):

B = kp

η1

[
Pz+δz − Pout

Lc − (z + δz)
+ ρ1δg

]

= kp

η2

(
Pin − Pz+δz

z + δz
+ ρ2δg

)
(4)

rom which one gets:

�P

Lc
+ δg

[
ρ2

z

Lc
+ ρ1

(
1 − z

Lc

)]

= uB

kp

[
η2

z

Lc
+ η1

(
1 − z

Lc

)]

+ δz

Lc

[
uB

kp
(η2 − η1) − δg(ρ2 − ρ1)

]
(5)

omparing Eqs. (3) and (5), one gets:

A − uB = kp[
η2(z/Lc) + η1(1 − (z/Lc))

]
×

[
uB

kp
(η2 − η1) − δg(ρ2 − ρ1)

]
δz

Lc
(6)

he denominator of the RHS member of this equation is positive.
ence, whether uA is larger than uB or not depends on the sign
f the product of δz and of the term in brackets in the numerator
f the RHS member of Eq. (6).

.2. Stability criterion

Looking at Fig. 1 shows that the flow is stable when uA > uB
or δz > 0, and when uB > uA for δz < 0. Hence, from Eq. (6), for
oth δz > 0 and δz < 0, the criterion of stability is expressed as:

u

kp
(η2 − η1) − δg(ρ2 − ρ1) > 0 (7)
ince the velocity uB marginally differs from the average flow
elocity, u, the latter is used in this expression. It contains two
erms, the first one represents the viscosity effect and the second
ne the density effect.
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Let consider the situation where the former is dominating,
or instance in horizontal flow (δ = 0) or for isopycnic fluids
ρ1 = ρ2). From Eq. (7), the stability criterion becomes:

2 > η1 (8)

et δz be positive, as shown in Fig. 1. When the criterion (8) is
atisfied, uA > uB and the perturbation is moving more slowly
han the liquids in the main part of the column cross-section.
he perturbation velocity decreases up to the point where the
osition of the interface in the main section A is catching that
n the perturbed section, hence restoring the unperturbed state.
his is well a stable situation. If, instead, η2 < η1, according to
q. (6), uB > uA. In this case, the perturbation is moving faster

han the main flow. It becomes amplified and the distance δz
s increasing. The liquid 2 is protruding through the interface
etween liquids 1 and 2, forming some kind of finger, hence the
ame viscous fingering given to this hydrodynamic instability.

Let now δz be negative, i.e. the perturbation has acted in such a
ay that the interface in section B is lagging behind the main part
f the interface. Then, if η2 > η1, according to Eq. (6), uB > uA,
he interface in the perturbed section is moving faster than the
ain interface. The perturbation is decreasing again until the

nterface reaches the same position in the two sections. If now,
2 < η1, then, uB < uA. The interface in the perturbed section is
agging more and more behind the main interface. This is again
n unstable situation.

This discussion illustrates that, when the viscosity term dom-
nates the density term in Eq. (6), a perturbation of the interface
s becoming amplified whenever η2 < η1. Hence, for a horizon-
al column, an interface is unstable when the displacing fluid is
ess viscous than the displaced fluid. Although some assump-
ions have been made to derive in a simple way Eqs. (1)–(6)
hich illustrate the behavior of a perturbation to the flow sys-

em, this above conclusion is valid when the system generating
he pressure-driven flow is operated in constant flow as well as
onstant pressure conditions, and whether the fluids are incom-
ressible or not.

When the second term of inequality (7) is dominating, for
nstance for isoviscous fluids, the stability criterion becomes:

(ρ2 − ρ1) < 0 (9)

hich, whatever the flow orientation, expresses that the flow is
table when the lower fluid is the denser. If the reverse is true,
hen the heavier fluid lies above the lighter one in the gravity
eld and a Rayleigh–Taylor instability is observed.

When the viscosity and density effects are both present, var-
ous situations can be encountered. The flow is always stable
hen the displacing fluid is more viscous than the displaced one

η2 > η1) and when the lower fluid is the denser (δ(ρ2 − ρ1) < 0,
.e. ρ1 > ρ2 for downward flow and ρ2 > ρ1 for upward flow).
onversely, the flow is always unstable when the displacing liq-
id is the less viscous one and when the upper fluid is the denser

ne. In the other situations, whether the flow is stable or not
epends on the flow velocity u. When η2 > η1 (i.e. when the vis-
ous contrast itself leads to a stable flow), inequality (7) shows
hat the flow is stable if the viscous term overcomes the gravita-
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ional term, i.e. if u is larger than a critical velocity uc expressed
y:

c = kpg

∣∣∣∣ρ2 − ρ1

η2 − η1

∣∣∣∣ (10)

f, instead, η2 < η1, inequality (7) shows that the flow is stable if
is smaller than uc, i.e. if the stabilizing density difference term
vercomes the destabilizing viscosity difference term. The above
tability criterion was first obtained by Hill [4], then by several
uthors by means of various arguments [5,6,9b,12,51–53].

The stability criterion expressed by inequality (7) can be
ritten as:

Papp
�η

η
− δ�Pstat

�ρ

ρ
> 0 (11)

here �Papp is the applied pressure drop and �Pstat the hydro-
tatic pressure when the column contains liquid 1, and �η/η and
ρ/ρ are the relative viscosity and density differences between

iquids 2 and 1, respectively. In liquid chromatography (LC),
he applied pressure drop is generally of the order of 100 bars
r more and the hydrostatic pressure for a vertical column of
he order of 0.01 bar (for water, the hydrostatic pressure for a
0 m long column is about 1 bar). In order for the density term
o be comparable to the viscosity term in relation (11), the rela-
ive density difference should therefore be 104 times larger than
he relative viscosity difference. In practice, the relative density
ifference rarely exceeds 1 and is frequently of the order 0.2
r less. The influence of the density effect in the flow stabil-
ty should therefore be similar to that of the viscosity effect for
relative viscosity difference of 10−4 or less. Experiments on

ronts as well as numerical simulations and linear stability anal-
sis show that such a relative viscosity change is much too small
o observe a significant fingering effect during the transit time
cross a typical column. Therefore, it appears that, in modern
C, the influence of the density difference on the flow stability

n vertical columns is negligible compared to that of the viscos-
ty effect, at least at the onset of the instability. Therefore, only
iscous fingering will be further analyzed in this article.

.3. Case of miscible fluids

In the above discussion about the stability criterion for vis-
ous fingering, it has not been specified whether the fluids are
iscible or not. In situations of interest in liquid chromatogra-

hy, liquids 1 and 2 are most often miscible. Then, a refined
nalysis for miscible liquids shows that, if c is the concentra-
ion of downstream liquid 1 in the binary mixture, which can be
et to vary from 0 for liquid 2 to 1 for liquid 1 without lost of
enerality, the stability criterion becomes [54,55]:

dη

dc

∣∣∣∣
c=0

+ dη

dc

∣∣∣∣
c=1

< 0 (12)

his criterion depends on the variation of the viscosity, η, of

he mixture with c. When the viscosity of the mixture decreases

onotonically with the increasing concentration c of fluid 1
n fluid 2, at the two end-points of the viscosity–concentration
urve, the derivatives of the viscosity with respect to the
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oncentration are negative and condition (12) is satisfied. Con-
ersely, the flow is unstable when the viscosity increases
teadily with increasing c. Thus, for fluids with monotonic
iscosity–concentration curves, the stability criterion expressed
y relation (12) is identical to that given by relation (8).

When the viscosity–concentration curve is not monotonic,
η/dc|c=0 and dη/dc|c=1 may be of opposite signs and the
ow may be stable while the viscosity contrast is unfavorable
η2 < η1) and vice versa [55]. The stability of the flow depends,
ot on the end-point viscosities, but on the end-point derivatives
f the viscosity with respect to concentration. This situation is
f particular interest in the case of water–methanol mixtures.
herefore, when a sample dissolved in a water–methanol mix-

ure of a given composition is injected in a water–methanol
ixture of another composition, a VF instability will develop

t that interface for which the stability criterion (12) is not sat-
sfied. However, the location of the unstable interface (leading
dge or tailing edge) may not be that governed by relation (8).

.4. Rate of change of the perturbation

The simplified model depicted in Fig. 1 and discussed in
ection 2.1 allows to get some description about the evolution
f the perturbation. The velocities uA and uB represent the rate
f change of the positions of the interfaces in sections A and B of
he chromatographic column, respectively, and their difference
epresents the rate of change of the perturbation of length δz:

B − uA = d(z + δz)

dt
− dz

dt
= d(δz)

dt
(13)

etting ρ1 = ρ2 in Eq. (6), one gets:

d(δz)

dt
= −uB

Lc

(η2 − η1)δz

[η2(z/Lc) + η1(1 − (z/Lc))]
(14)

he rate of change of the perturbation appears to be approx-
mately proportional to the perturbation itself. For small
erturbations, Eq. (14) gives:

z = Ap exp

[
−uB

Lc

(η2/η1) − 1

1 + ((η2/η1) − 1)(z/Lc)
t

]
(15)

here Ap is the initial amplitude of the perturbation at time t = 0.
his equation is valid only at small times for which the position
f the interface has not changed significantly after the onset of the
erturbation. Nevertheless, in spite of these limitations and of the
imple VF model depicted in Fig. 1, it illustrates the exponential
ehavior of the initial evolution of the perturbation. When the
rgument of the exponential term is negative, i.e. when η2 > η1,
he perturbation decays exponentially with time, while it grows
xponentially with time if the displacing fluid is less viscous
han the displaced fluid. The consequences of this exponential
ehavior will be exploited in a later section.

.5. Some relevant parameters of the viscous fingering

roblem in chromatographic columns

Potentially, this viscous fingering instability is always present
n liquid chromatography when the viscosity of the injected sam-
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le is different from that of the carrier liquid. For a monotonic
iscosity vs. concentration profile, the instability is going to
evelop at the tail of the peak if the sample is more viscous than
he eluent, and at the front of the peak in the opposite case.

Clearly, as seen from Eq. (14) for a monotonic viscosity ver-
us concentration profile, the motor for this instability is the
iscosity contrast between the two fluids. As soon as η1 �= η2,
viscous fingering instability will amplify any little perturba-

ion of the interface because of a mobility difference across the
nterface, the less viscous fluid traveling faster than the more
iscous one. The fastest moving fluid is therefore crashing into
he slow moving one, “destroying” the planar interface. Eq. (15)
eveals that the parameter measuring the efficiency of this desta-
ilizing mechanism is the viscosity ratio, η2/η1 (or the relative
iscosity difference, η2/η1 − 1) rather than the absolute viscosity
ifference. As soon as η1 > η2 the less viscous fluid displaces the
ore viscous one and fingering starts. When η1 = η2, the two flu-

ds have the same viscosity, the various dispersion mechanisms
molecular diffusion, eddy diffusion and, possibly, mass transfer
etween phases) are the only transport phenomena that will mix
he interface which remains planar. When η1/η2 is increased,
he viscosity difference increases as well and hence the more
nstable becomes the system.

A second important parameter of the problem is the flow
elocity, u, related to the imposed pressure drop along the col-
mn or imposed flow rate. Eq. (15) indicates that the rate of
rowth of the instability, at its onset, increases with increasing
ow velocity.

The instability mechanism explained in the previous sec-
ion shows that any little perturbation should grow as soon as
1/η2 > 1 whatever its characteristic width along the planar inter-
ace. As a matter of fact, in a homogeneous porous medium, the
attern emerging at the onset of VF is usually characterized by a
ell defined intrinsic width of the fingers which is the result of
compromise between the destabilizing viscosity contrast and
stabilizing mechanism which has to be present for limiting the
nger growth since this growth cannot realistically be indefi-
itely exponential. For immiscible fluids, the stabilizing action
s provided by the interfacial tension since the finger growth
s accompanied by a large increase in the interfacial surface
rea, which is energetically unfavorable. In the case of miscible
uids, of interest in chromatography, this stabilizing action is
rovided by the dispersion mechanism, both axial dispersion,
or dampening the axial concentration gradient and hence the
xial viscosity gradient which is driving VF, and transverse dis-
ersion, for dampening the transverse concentration unequalities
hich are the manifestation of the presence of fingers and, hence,

or homogenizing the fingers perpendicularly to the flow direc-
ion. All perturbations of very narrow width will immediately be
moothed out by transverse band broadening. It is only above a
iven critical finger width that dispersion is not effective enough
n the time scales of the fingering instability to kill the pertur-
ations due to the viscosity difference. The value of this critical

idth will depend on the ratio, ε, between transverse and axial
ispersion which is thus also a key parameter of the problem. As
t is known that axial and transverse dispersions do not depend
n the same way on the flow velocity, ε also depends on u. There-
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ore, the effect of u on the VF pattern is not as straightforward
s implied by Eq. (15).

Viscous fingering will hence depend essentially on three
arameters i.e. the viscosity ratio η2/η1, the flow velocity u, and
he ratio ε between transverse and axial dispersion coefficients.
ur objective is here to gain insight on the influence of each of

hese parameters on the width of the fingers that appear at the
nset of the instability. It can be noted that, in the present con-
ext, the expressions “dispersion” and “dispersion coefficient”
ncompass the various mechanisms other than viscous finger-
ng leading to band broadening, in both axial and transverse
irections.

. Linear stability analysis

A linear stability analysis (LSA) is a mathematical treatment
f a stability problem that allows to describe the characteristics
f the instability in the early stages of its development. Such a
reatment is very general and has been applied to a large number
f situations where flow instabilities occur [56,57]. In this sec-
ion, we describe the main features of a LSA, and we present the

ain results of the LSA of the viscous fingering problem in a
orous medium performed by Tan and Homsy [1]. This analysis
elies on a model describing the flow and mass transport in the
olumn. The basic equations of this model are first described
elow.

.1. Basic equations of the model

We consider that the column is homogeneously packed and
as a constant permeability, kp. The local flow velocity is
ssumed to be related to the local pressure gradient according to
he Darcy law in the flow direction, z, as well as in the transverse
irections, x and y:

x = −kp

η

∂P

∂x
(16a)

y = −kp

η

∂P

∂y
(16b)

z = −kp

η

∂P

∂z
(16c)

here vx, vy and vz are the components of the local flow veloc-
ty vector along the corresponding directions, x, y and z, P
s the local pressure and η the local value of the fluid vis-
osity. At this point, there is no need to specify which kind
f flow velocity (superficial, chromatographic, or interstitial
elocity) is involved as the proportionality coefficients between
hese three quantities are assumed to be constant throughout
he column [58a]. The concept of local property must be here
nderstood as corresponding to a region of volume at least

qual to the representative elementary volume for which the
ontinuum approach can be applied to the porous medium
9c]. For homogeneous packings of uniform spheres, this cor-
esponds to a length scale of approximately five particle sizes
59].

d
c
E
w
a
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The continuity equation, which expresses mass conservation
f the fluids is written, for uncompressible fluids, as:

∂vx

∂x
+ ∂vy

∂y
+ ∂vz

∂z
= 0 (17)

et us follow the evolution in a porous medium of one single
lanar interface between two miscible fluids traveling along the
direction and the viscosity of which depends on the concentra-

ion c of the displaced fluid 1. The evolution of the composition
f the mixture of the two fluids 1 and 2 is therefore described by
convection–diffusion equation for c:

∂c

∂t
+ vx

∂c

∂x
+ vy

∂c

∂y
+ vz

∂c

∂z
= Dax

∂2c

∂z2 + Dtr

(
∂2c

∂x2 + ∂2c

∂y2

)
(18)

ax and Dtr are the axial and transverse dispersion coefficients,
espectively. The dispersion process is assumed isotropic in the
ransverse directions x and y. However, because they depend
ifferently on the axial flow velocity, Dax and Dtr may be sig-
ificantly different. They are assumed constant throughout the
olumn. It should be noted that the mass conservation equation
or the downstream fluid accounts solely for its concentration c in
he liquid mixture. Hence, it is implicitly assumed that there is no
dsorption or distribution within the stationary phase involved
n the present theory. The crucial question of the influence of
etention on the VF phenomenon will be treated in forthcom-
ng publications. The present theory can be applied only to
nretained species.

The local viscosity entering Eq. (16) is that of the mixture of
uids. Eqs. (16–18) must therefore be completed by an expres-
ion of the dependence of η on c. There are various equations
escribing such a dependence [60]. In this study, the empirical
rrhenius expression for the viscosity is used [61]. It states that

he logarithm of the viscosity of the mixture is the sum of the log-
rithms of the viscosities of the individual components weighted
y their relative amounts in the mixture. This law is found sat-
sfying if this relative amount is selected as the mole fraction
62]. Thus, if the mole fraction of the displaced fluid (fluid 1 in
ig. 1) in the binary fluid mixture is taken as the concentration
nit c in Eq. (18), the Arrhenius expression is written as:

n η = c ln η1 + (1 − c) ln η2 (19)

r, equivalently:

n
η

η2
= Rc (20)

ith

= ln
η1

η2
(21)

he logmobility ratio, R, can be considered as the key parameter
riving the VF instability. The viscosity–concentration profile
escribed by Eqs. (19) or (20) is monotonic. Therefore, the

ondition for stability is η2 > η1, or R < 0. As noted earlier,
qs. (19) or (20) do not apply for water–methanol and
ater–acetonitrile mixtures which exhibit a maximum viscosity

t some intermediate composition [58b].
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In order to solve the system of Eqs. (16–19), the initial condi-
ions must be defined. We assume that the sample is introduced
n the packed column as a rectangular plug surrounded by the

obile phase. The length initially occupied by the sample at the
ime of introduction is an important parameter of the problem.
owever, as, in this study, we are interested by what happens at

he beginning of the development of the VF instability, we are
ainly concerned by that sample-mobile phase interface which

s unstable. As seen in Section 2.1, this is the upstream interface
f the sample is more viscous than the carrier liquid (then fluid 1
s the sample, and fluid 2 the carrier), the downstream interface
n the opposite case (then fluid 1 is the carrier and fluid 2 the
ample). Therefore, the length of the sample plug, Linj, is not
pertinent parameter in the present study and we will consider

hat fluids 1 and 2 extend semi-infinitely on each side of the
nstable interface. Thus, the conclusions of this approach can
e considered as correct only when there is still a constant sam-
le concentration plateau between the front and rear interfaces.
hey cannot be applied to the real chromatographic situation
hen the two interfaces of the sample plug start to interact under

he effect of dispersion, i.e. when the standard deviation of each
nterface becomes larger than about Linj/4, hence at times larger
han about L2

inj/(32Dax).
To simplify the study in this first approach to VF, we consider

he situation of an unretained sample (this is why there is no
erm containing the sample concentration in the stationary phase
n Eq. (18)) and leave the influence of retention on VF to a
ater study. If we assume that the interface is a step function
n concentration centered at z = 0 at time 0, and that a constant
ow rate, corresponding to a constant velocity u along the z-
irection, of the displacing fluid is introduced in the system,
hen the solutions of Eqs. (16–19) are:

x,o = 0 (22a)

y,o = 0 (22b)

z,o = u (22c)

o(z, t) = 1

2

[
1 + erf

(
z − ut

2
√

Daxt

)]
(23)

o(z, t) = η2 exp[Rco(z, t)] (24)

o(z, t) = − u

kp

∫ z

ηo(z′, t) dz′ (25)

here erf is the error function [63]. The subscripts “o” appear-
ng in Eqs. (22–25) indicate that the values of the parameters
orrespond to the base state, i.e. that state obtained in absence
f any flow instability. The base state concentration profile given
y Eq. (23) is that which is observed in frontal analysis. It does
ot depend on the transverse coordinates and has a characteris-
ic sigmoidal shape along the flow axis. It induces a base state
iscosity profile, ηo[co(z, t)], obtained from Eqs. (23) and (24),
nd a corresponding base state pressure profile given by Eq.

25). Because of the axial dispersion process, the base state con-
entration, viscosity and pressure profiles are time dependent.
t can be noted that, in order to obtain the pressure profile from
q. (25), a reference pressure is needed. In practice, this is the

S
c
t
I
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tmospheric pressure at column outlet. However, because the
olumn length is not a relevant parameter in the LSA, this is not
pecified in Eq. (25).

.2. Principles of linear stability analysis

The principle of a LSA is to see whether small perturbations
round the base state of Eqs. (22–25) will be amplified or not in
he course of time. It consists in writing the various quantities,
, of the model (i.e. vx, vy, vz, P, c, η) as:

= qo + q′ (26)

here the qo quantities are the base state quantities (here given
y Eqs. (22–25) while the q′ are small fluctuations from the
ase state. Inserting Eq. (26) for each of the model variable into
he basic model Eqs. (16–19), assuming that the perturbations
re small enough for all nonlinear terms in the perturbations to
e neglected, and combining the resulting equations with the
ase state expressions (22–25) gives a system of linear partial
ifferential equations describing the linearized evolution of the
erturbations q′.

A key feature of a LSA is to recognize that, near their onset,
he perturbations have a wavy, periodic pattern that propagates
long the flow direction z. Therefore, one seeks solutions of the
inear partial differential equations for the quantities q′ that have
sinusoidal shape in the transverse directions x and y, that are
ence written as:

′ = Φ(z, t)eikxxeikyy (27)

here the amplitude Φ varies with the particular quantity q′
t hand (for example, a concentration or an axial velocity) and
as the dimension of this quantity. It is a function of the axial
osition z and of the time t. i is the imaginary unit, kx and ky are
he wavenumbers of the disturbances in the directions x and y.
nother key feature of a LSA is to express that the amplitude Φ

epends exponentially on time:

(z, t) = φ(z, 0)eωt (28)

here ω is the growth rate of the instability. Selecting such an
volution law for the instability is justified on the ground of many
xperimental observations of the various kinds of instabilities.
his expresses that the rate of change of the amplitude of a per-

urbation is proportional to this amplitude. In our simple model
escribing the mechanism of VF, such an exponential evolution
aw has been obtained in Section 2.4 (see Eq. (15)).

Setting Eqs. (27) and (28) into the system of partial differ-
ntial equations describing the evolution of the perturbations
llows to eliminate the quantities q′ and to obtain a relationship
etween the growth rate ω and the wavenumber k defined as:

=
√

k2
x + k2

y (29)
uch a relationship allows to derive the wavenumbers (and asso-
iated wavelengths, connected to the finger widths) which have
he largest positive growth rateω and are thus growing the fastest.
t is the main result of a LSA. In the field of wave theory, the ω
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ersus k relationship is commonly called the “dispersion rela-
ion” [1,56,57,64]. It should be noted that the term “dispersion”
n this context is used to distinguish “dispersive” waves from
non-dispersive” waves for which ω/k is constant whatever k.
his term is without connection with the usual meaning that it
as in the chromatographic context where it is associated with
he band broadening process.

A particular characteristic of instabilities involving miscible
uids is that the base state is not translated unchanged along the
ow direction as time elapses, because of the diffusion or disper-
ion processes. Such a time dependence of the base state, due to
he axial dispersion, is apparent from Eq. (23). This somewhat
omplicates the derivation of the dispersion relation. In their
SA study on miscible displacements in porous media, Tan and
omsy [1] solved this difficulty by applying the quasi-steady-

tate approximation, which assumes that the growth rate of the
isturbances is much faster than the rate of change of the base
tate. With this approximation, taking the base state as frozen
t a given time to, ω and φ in Eq. (28) should be considered as
ependent on to.

.3. Linear stability analysis of the VF instability in a
orous medium

The LSA of the VF instability in a porous medium was first
erived by Chouke assuming a step viscosity profile, a linear
iscosity–concentration relationship, and an isotropic dispersion
i.e. Dax = Dtr) [65]. Tan and Homsy extended the calculations
o the more realistic situation, in the liquid chromatographic
ontext, of a viscosity profile given by Eq. (19) and of
nisotropic dispersion [1]. To do this, Eqs. (20–33) are rendered
imensionless by selecting reference values of length and
ime. Because the geometrical lengths of the chromatographic
olumns are not relevant parameters in the LSA, the reference
ime and length are defined by means of the physical parameters
ntering the model as:

ref = Dax

u
(30)

nd

ref = Lref

u
= Dax

u2 (31)

an and Homsy [1] obtained an analytical expression of the
ispersion relation for the basic model described in Section
.1 at time 0, i.e. when the unstable interface is a step profile.
heir result is expressed in terms of dimensionless quantities, ω*

or the dimensionless growth rate and k* for the dimensionless
avenumber:

∗ = 1

2

[
(Rk∗ − k∗2) − k∗√k∗2 + 2Rk∗

]
+ (1 − ε)k∗2 (32)

n the following, dimensionless quantities are denoted with “*”.

he dimensional growth rate and wavenumber are:

= ω∗

tref
= ω∗ u2

Dax
(33)

fl

w
r

ngering phenomenon occurring in a porous medium at a step interface between
n upstream liquid 2 less viscous than a miscible downstream liquid 1, according
o Eq. (37) for R = 1 and ε = 0.1.

nd

= k∗

Lref
= k∗ u

Dax
(34)

o any wavenumber, k or k*, is associated a wavelength, λ or λ*:

= 2π

k
(35a)

r

∗ = 2π

k∗ (35b)

n Eq. (32), the parameter ε is the dispersion ratio, defined as:

= Dtr

Dax
(36)

t measures the anisotropy of the dispersion process.
The dispersion relation (32) contains the searched informa-

ions about the response of the chromatographic system to any
ind of disturbances, since it provides the values of the growth
ate ω of the exponential increase of a given perturbation as a
unction of its wavenumber. It is noticeable that the dispersion
elation (32) depends only on a few parameters when written
n dimensional terms. These parameters are the flow velocity,
, the axial dispersion coefficient, Dax (these two parameters
re involved in the definition of the reference length and time),
he transverse dispersion coefficient, Dtr (through the dispersion
atio, ε), and the viscosity contrast (through the logmobility
atio, R). It does not explicitly depend on the column perme-
bility. Nevertheless, the particle size influences the VF process
hrough its effect on the dispersion coefficients.

.4. Characteristics of the dispersion relation

The dispersion relation obtained from Eq. (32), for R = 1 (i.e.
1/η2 = 2.72) and ε = 0.1, is shown in Fig. 2. This curve is typical
f many dispersion relations obtained in various situations where

ow instabilities occur.

First, it is seen that there is a range of wavenumbers for
hich ω is positive. Accordingly, the system is unstable with

egard to the viscous instability since all disturbances with these
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Fig. 4. Dimensionless most probable and cut-off dimensionless wavenumbers
p
v
b

also increases. These wavenumber and growth rate variations
with ε are shown in Figs. 4 and 5, respectively. That k∗

c decreases
with increasing ε reflects the fact that as the tranverse dispersion
becomes more important, neighbor fingers of narrow widths (i.e.
G. Rousseaux et al. / J. Chro

avenumbers will be exponentially amplified as time elapses.
n fact, Fig. 2 illustrates that the unstable range of wavenumbers
xtends from 0 to a cut-off k∗

c . Modes with wavenumbers larger
han the critical or cut-off wavenumber k∗

c lead to negative ω

alues, and, thus, are stable. In other words, modes with wave-
engths smaller than a critical value cannot develop themselves,
ut will decay exponentially. Physically, this illustrates the fact
hat fingers which are too narrow are immediately smoothed out
y transverse dispersion.

The curve of Fig. 2 exhibits a maximum growth rate, ωm or
∗
m, for a particular value of the wavenumber, km or k∗

m. This
orresponds to the mode which will grow the fastest. This mode
s called the most probable mode as this is the mode which will
ventually dominate the other ones, or also, the most dangerous
ode, as this is the most unstable one. In practice, the finger
idth, if measured as the average distance between the tips of

wo neighbor fingers at onset corresponds therefore to λm, i.e.
�/km. The characteristic onset time, τ, of the pattern is given as
= 1/ωm. The LSA allows therefore to have insight on both the
haracteristic wavelength and the onset time of the VF pattern.

.5. Influence of the dispersion ratio

Dividing the two sides of Eq. (32) by R2 shows that the ana-
ytical dispersion relation computed for t = 0, for which the base
tate is a step function, can be expressed as:

ω∗

R2 = 1

2

(
k∗

R

) ⎡
⎣1 −

(
k∗

R

)
−

√(
k∗

R

)2

+ 2

(
k∗

R

)⎤
⎦

+ (1 − ε)

(
k∗

R

)2

(37)

q. (37) shows that a plot of ω*/R2 versus k*/R only depends
n the dispersion ratio ε. Thus the characteristic wavenumbers
k∗

c and k∗
m) are scaled to R while the maximum growth rate is

caled to R2. It is easily shown that the cut-off value is:

k∗
c

R
=

√
(1/ε) − 1

2(1 − ε)
(38)

t is seen that, as ε → 0 (very strong dispersion anisotropy), k∗
c /R

ncreases as 1/
√

4ε, while its limit when ε → 1 (isotropic axial
nd transverse dispersion) is:

lim
→1

(
k∗

c

R

)
= 1

4

[
1 + 3

4
(1 − ε)

]
(39)

he most probable wavenumber is solution of:

ε(1 − ε)

(
k∗
m

R

)3

+ 4ε(5 − 4ε)

(
k∗
m

R

)2

+ 8ε

(
k∗
m

R

)
− 1 = 0

(40)

he dispersion relations, for various values ε, are plotted in Fig. 3

s ω*/R2 versus k*/R. The curves have a similar aspect. Still,
t is seen that, as ε decreases, the growth rate, for a given k*,
ncreases. Furthermore, in the same time, the cut-off and most
angerous wavenumbers increase and the maximum growth rate

F
t
fi
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er unit value of the viscosity contrast parameter R, k∗
m/R and k∗

c /R, respectively,
s. dispersion ratio, ε, for viscous fingering, at time 0, at the step interface
etween a low viscosity liquid displacing a high viscosity miscible liquid.
ig. 5. Maximum dimensionless growth rate per unit value of the square of
he viscosity contrast parameter R, ω∗

m/R2, vs. dispersion ratio, ε, for viscous
ngering, at time 0, at the step interface between a low viscosity liquid displacing
high viscosity miscible liquid.
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f large wavenumbers) cannot survive individually because they
re quickly smoothed out by dispersion.

A close inspection to Eq. (32) shows that for large wave-
engths, i.e. when k → 0, the dominant term is linearly
roportional to R. This means that genuinely the origin of the
nstability, in absence of any dispersion smoothing out small
ength scales (or equivalently large k), is the viscosity ratio
etween the two fluids. If the displacing fluid is more viscous
han the displaced one, R < 0 and the growth rate is negative,
ence the system is stable. If the displacing fluid is the less vis-
ous one, R > 0 and an instability occurs with an intensity linearly
roportional to the viscosity ratio. Transverse dispersion coun-
eracts this instability by smoothing out any small perturbation,
ence providing a negative stabilizing term proportional to εk2

n the dispersion relation. Axial dispersion is also a stabilizing
echanism: initially we have a sharp interface, but axial disper-

ion causes this jump to spread out in time thus diminishing the
iscosity gradient across the interface in time.

. Application to liquid chromatography

The main result of the LSA of the VF phenomenon in a porous
edium is the dispersion relation expressed by Eq. (37). It is

iven in dimensionless terms. In this section, we translate this
xpression into usual quantities characterizing the chromato-
raphic process. The relationship between ω* and k* depends
n two parameters, R and ε. According to Eq. (21), R is the nat-
ral logarithm of the viscosity ratio. Hence, R-values of 0.5, 1
nd 2 correspond to viscosity ratios of 1.6, 2.7, and 7.4, respec-
ively. ε is the dispersion ratio, defined by Eq. (36). Its typical
alues in liquid chromatography, as well as those of the reference
ength and time required to expressed the growth rate and finger
idth (or wavelength) in dimensional quantities, are discussed

n the next section.

.1. Dispersion ratio in LC

The axial and transverse dispersion coefficients, Dax and Dtr,
re related to the axial and transverse (radial) plate heights, Hax
nd Htr, as:

ax = Haxu

2
; (41a)

tr = Htru

2
(41b)

he chromatographic literature makes frequent use of dimen-
ionless parameters, the reduced velocity, ν, and the reduced
axial) plate height, hax, defined as [66]:

= udp

Dm
(42)

nd
ax = Hax

dp
(43)

here Dm is the molecular mutual diffusion coefficient of the
ample in the carrier liquid and dp is the average particle size of

(
b
t
w
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he porous bed. Similarly, the reduced transverse plate height,
tr, can be defined as:

tr = Htr

dp
(44)

hese dimensionless quantities are nothing else than some Péclet
umbers (or reciprocals of Péclet numbers) based on flow veloc-
ty, particle size (or half this size), and either Dm, Dax or Dtr, for
he diffusivity.

Combining Eqs. (30), (41a) and (43) shows that the reference
ength and time are equal to:

ref = 1

2
Hax (45)

nd

ref = 1

2

Hax

u
(46)

q. (45) shows that the reference length is half the axial plate
eight. The reference time is the transit time over a distance
f half a plate. It is seen from Eqs. (36) and (41–44) that the
ispersion ratio ε is equal to:

= Htr

Hax
= htr

hax
(47)

The axial and transverse plate heights depend on various flow,
orous bed and analyte parameters. There have been several
heories and correlations developed to express these depen-
ences, both in the chromatography field and in the chemical
ngineering, petroleum engineering, soil science and physics
eld. For reviews of these investigations, see Refs. [58c,67,68]
or the chromatography field, and [69,70] for the engineering
nd physics field. In many cases, dispersion studies in one field
gnored the studies in the other field. This probably comes, in
art, from the different terminology used by these communities.
hromatographers use the unfortunate, but widespread, expres-

ion “plate height” or “height equivalent to a theoretical plate”
o describe the quantity Hax, after the seminal work of Martin
nd Synge [71], while physicists use the more meaningful term
dispersion length” to describe the quantity Lref, which as seen
rom Eq. (45) is half the plate height.

Porous beds in modern LC have some peculiarities compared
o porous media involved in engineering. LC columns are homo-
eneously packed with quasi-monodisperse spherical particles
f very narrow size. Accordingly, for separation optimization
urposes as well as because of pressure limitations, they are
perated in a relatively narrow range of reduced velocities, typi-
ally between 2 and 30. This is a ν region where the coupling of
olecular diffusion and anastomosis (i.e. the crossing of stream-

ines, or stream-splitting, in a porous medium combined with
elocity fluctuations along a streamline), described by Giddings
72], is dominantly controlling the eddy diffusion (as it is called
n the chromatography literature) or hydrodynamic dispersion

as it is called in the physics literature) contribution to band
roadening in the mobile phase. Therefore, in order to express
he dependence of the plate height on the operating parameters,
e prefer to use the so-called “Knox equation”, which is well
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Fig. 7. Dimensionless dispersion relation, ω*/R2 vs. k*/R, at time 0, of the
viscous fingering phenomenon occurring in a porous medium between a step
interface between an upstream liquid 2 less viscous than a miscible downstream
liquid 1, for various values of the reduced velocity. From the lower to the upper
curves: ν = 2; 3; 4; 5; 10; 15; 20; 25; 30.

Fig. 8. Dimensionless most probable and cut-off dimensionless wavenumbers
p
v
b

wavenumbers increase steadily with ν. Similarly, on Fig. 9, the
maximum growth rate, ω* is found to increase with ν. The values
observed in the limit of ν = 0 correspond to the hypothetical sit-
uation where the axial and transverse dispersion coefficients are
ig. 6. Dispersion ratio, ε, vs. reduced velocity, ν, for typical values of the plate
eight parameters, A = 1, B = D = 1.4, C = 0.01, E = 0.06.

dapted to the description of dispersion in the ν range of inter-
st in LC rather than other correlations of wider scope found
n the engineering literature (see Ref. [70]). In dimensionless
arameters, this semi-empirical equation is written as [73]:

ax = B

ν
+ Aν1/3 + Cν (48)

here A, B and C are dimensionless constants.
The transverse plate height also depends on the operating

arameters. There is a general agreement, in the fields of chro-
atography as well as of engineering and physics, that this

ependence is expressed as:

tr = D

ν
+ E (49)

here D and E are dimensionless constants. For isotropic mate-
ials, D should be equal to B. The measurement of transverse
ispersion is more difficult than that of axial dispersion. This is
hy there are very few determinations of D and E in LC columns

74–76], as well as in engineering systems [69,70]. Reported val-
es of E are equal to 0.11 [69], 0.17 [70], 0.060 [74], 0.075 [75]
nd 0.12 [76].

Eqs. (48) and (49) show that the flow rate dependences of the
xial and tranverse dispersion coefficients are different. Accord-
ngly, their ratio ε depends on flow velocity. This dependence is
hown in Fig. 6 for typical values of the dimensionless constants,
= 1, B = D = 1.4, C = 0.01 and E = 0.06. These values are typi-

al for unretained species [73,74]. It is seen, on Fig. 6, that the
ispersion ratio, in typical LC conditions, is well smaller than
. It decreases steadily as the reduced velocity increases, which
eflects the fact that the axial dispersion coefficient increases
aster with the reduced velocity than the transverse dispersion
oefficient does.

.2. Dispersion relation versus flow velocity
The dispersion relation is shown on Fig. 7 for various val-
es of ν, from 2 to 30. It is seen that the larger ν, the larger
he dimensionless growth rate for any dimensionless wavenum-
er. It is seen on Fig. 8 that the most dangerous and the cut-off

F
t
fi
a

er unit value of the viscosity contrast parameter R, k∗
m/R and k∗

c /R, respectively,
s. reduced velocity, ν, for viscous fingering, at time 0, at the step interface
etween a low viscosity liquid displacing a high viscosity miscible liquid.
ig. 9. Maximum dimensionless growth rate per unit value of the square of
he viscosity contrast parameter R, ω∗

m/R2, vs. reduced velocity, ν, for viscous
ngering, at time 0, at the step interface between a low viscosity liquid displacing
high viscosity miscible liquid.
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Fig. 10. Most probable and cut-off wavenumbers per unit value of the viscos-
ity contrast parameter R, related to the particle diameter, kmdp/R and kcdp/R,
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espectively, vs. reduced velocity, ν, for viscous fingering, at time 0, at the step
nterface between a low viscosity liquid displacing a high viscosity miscible
iquid.

qual (ε = 1), i.e. k∗
c /R = 1/4, k∗

m/R = (
√

5/2) − 1 ≈ 0.118,
nd ω∗

m/R2 = (5
√

5 − 11)/8 ≈ 0.0225 [1].
The curves shown on Figs. 8 and 9 represent variations of the

imensionless quantities, k* and ω*, as a function of the reduced
elocity. However, as these dimensionless quantities themselves
epend on ν through Lref and tref, it is interesting to investigate
he dependence of the dimensional quantities ω and k on the flow
elocity. From Eqs. (33), (34) and (41–43), it comes:

k

R
= 2

hax

k∗

R

1

dp
(50)

nd

ω

R2 = 2ν

hax

ω∗

R2

Dm

d2
p

(51)

he variations of kmdp/R and of kcdp/R as functions of
he reduced velocity are shown in Fig. 10, and those of
ωm/R2)(d2

p/Dm) versus ν in Fig. 11.
The wavenumbers kc and km are seen to increase with increas-

ng ν in the ν range shown in Fig. 10, but the slopes of the
urves decrease as ν increases. In fact, it can be shown that both
avenumbers reach maximum values, which are kcdp/R = 1.435

or ν = 51, and kmdp/R = 0.556 for ν = 35. Instead, the perturba-
ion growth rate increases steadily with increasing ν as seen in
ig. 11. This increase is almost linear in the ν range of interest. It

s interesting to note that, in the simple model depicting the VF
henomenon in Section 2, the growth rate appears to be linearly
roportional to the flow velocity as seen in Eq. (15). Therefore,
hen the perturbations are still small enough for their evolution

o be described Eq. (28), i.e. when nonlinear terms are negligi-
le, their amplitude is nearly independent of the flow velocity
since ω is nearly proportional to u and t = z/u) and they grow as
z with the distance z traveled by the interface.
It is interesting to give some numbers for the characteristic
arameters at the onset of the VF instability for typical operating
onditions of an analytical LC column. The parameters selected
or describing the chromatographic system, the derived flow and

g
p
(

article, Dm/d2
p , vs. reduced velocity, ν, for viscous fingering, at time 0, at the

tep interface between a low viscosity liquid displacing a high viscosity miscible
iquid.

ispersion parameters, the corresponding reference dimensions,
nd the VF characteristic parameters are reported in Table 1.
he numbers of the equations used to compute these quanti-

ies are also given. It is seen that the reference parameters are
uite small, 6.67 �m for the length and 4.66 ms for the time.
his reflects the high efficiency of the chromatographic system
ince the reference length is half the axial plate height, and the
eference time the transit time over that distance. The VF param-
ters are given for three values of the viscosity ratio, η1/η2, and
ence of the logmobility ratio, R. The intermediate values corre-
pond to R = 1, i.e. to η1/η2 = 2.72. The other values correspond
o a two-times smaller and a two-times larger viscosity ratio.
t is seen that the wavenumbers are large, of the order of 100
r 1000 cm−1, which indicates that, at the onset of VF, there
re of the order of 100 or 1000 undulations per cm in the trans-
erse direction, the more so as R is larger. Their most probable
avelength is small, about 0.2 mm for a rather small viscosity

atio and still smaller for larger R-values. They correspond to
he mode which grows the fastest. The characteristic time, τVF,
or the growth of the instability can be defined, from Eq. (28)
s:

VF = 1

ωm
(52)

his is the time over which the amplitude of the instability
ncreases by a factor e1 = 2.72. This time is rather short, about
alf a second for the lowest viscosity ratio and 20 ms for the
argest one in Table 1. It decreases as 1/R2 with increasing R.

. Discussion

.1. Time evolution of the dispersion relation
The above numerical estimations of the wavelengths and
rowth rates of the VF instability are based on the relation dis-
ersion derived by Tan and Homsy [1] and expressed by Eq.
37). It should be remembered that this relation was obtained
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Table 1
Values of the viscous fingering characteristic parameters for a typical LC analytical column

Given typical parameters of the system
Column diameter dc = 4.6 mm
Flow rate Q = 1 ml min−1

Particle diameter dp = 5 �m
Total porosity εtot = 0.7
Mutual diffusion coefficient Dm = 0.5 10−5 cm2 s−1

Plate height dimensionless coefficients A = 1; B = D = 1.4; C = 0.01; E = 0.06 (from [72,73])

Derived flow and dispersion parameters
Flow velocity u = 4Q/(πεtotdc

2) = 0.143 cm s−1

Reduced velocity � = 14.3 (from Eq. (42))
Reduced axial plate height ha = 2.67 (from Eq. (48))
Reduced transverse plate height htr = 0.158 (from Eq. (49))
Axial dispersion coefficient Dax = 9.56 × 10−5 cm2 s−1 (from Eqs. (41a) and (43))
Transverse dispersion coefficient Dtr = 0.565 × 10−5 cm2 s−1(from Eqs. (41b) and (44))
Dispersion ratio ε = 0.0591 (from Eq. (36))

Reference dimensions
Reference length Lref = 6.67 × 10−4 cm = 6.67 �m (from Eqs. (43) and (45))
Reference time tref = 4.66 × 10−3 s (from Eqs. (42), (43) and (46))

Viscous fingering characteristic parameters

Viscosity ratio η1/η2 = 1.36 η1/η2 = 2.72 η1/η2 = 5.44 Eqs.
Logmobility ratio R = 0.307 R = 1 R = 1.69

Dimensionless cut-off wavenumber, k∗
c 0.508 1.65 2.80 (38)

Dimensionless most probable wavenumber, k∗
m 0.211 0.687 1.16 (40)

Dimensionless maximum growth rate, ω∗
m 0.00800 0.0849 0.243 (37) and (40)

Dimensional cut-off wavenumber, kc 760 cm−1 2480 cm−1 4200 cm−1 (50)
Dimensional most probable wavenumber, km 315 cm−1 1030 cm−1 1740 cm−1 (50)
Cut-off wavelength, λc 82.6 �m 25.3 �m 15.0 �m (35a)
Most probable wavelength, λm 199 �m 61.0 �m 36.1 �m (35a)
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imensional maximum growth rate, ωm 1.72 s−1

haracteristic VF time, τVF 0.583 s

or a step interface between the two fluids. As time elapses,
he axial concentration profile becomes less steep under the
nfluence of the axial dispersion process. The viscosity gradient
cross the front is thus decreasing in time. As a consequence,
he base state is more and more stable with regard to VF as
he motor of the instability is weakening in time. We intuitively
xpect that this reducing effect will affect the dispersion rela-
ion in the same direction as a reduction in the viscosity contrast,
.e. of R. Unfortunately, the complexity of the equations of the
asic model does not allow to get an analytical expression of
he time dependence of the dispersion relation. Nevertheless,
umerical solutions have been obtained by Tan and Homsy [1].
hey confirm the above expectation: it is found that k∗

c , k∗
m and

∗
m decrease with time, as they do for a step interface when
decreases. Still, it is not possible to simply express the time

ependences of these three quantities by means of Eqs. (37),
38) and (40) completed by a single decreasing function of R
ersus time. Nevertheless, the rate of decay of the three charac-
eristic quantities of a dispersion relation decreases with time.
his decay is rather slow after a few tref (let say, about 5tref).

n spite of this, the theoretical calculations of Tan and Homsy

ased on an initial step interface were in reasonably good agree-
ent with available experimental data on the finger scale [1].
he decay of the growth rate may have been somewhat com-
ensated by the destabilizing effect obtained when taking into

s
v
s
w

18.2 s−1 52.2 s−1 (51)
0.055 s 0.019 s (52)

ccount the dynamic dependence of the dispersion coefficients
n the local velocity instead of on the constant mean veloc-
ty u [77,78]. Anyway, Eqs. (37)–(40) should be considered as
roviding upper limit values of kc, km and ωm.

.2. Influence of the geometry of the column

The LSA has provided us with important information on the
haracteristic length scale of the fingers that appear at onset.
he wavelength of the fingers that appear initially is given by
m = 2�/km where km is the wavenumber of the most unsta-
le wavenumber in the band of unstable modes ranging from
= 0 to the cut-off kc above which all growth rates are negative.
his 0 to kc range of unstable wavenumbers is thus dictated by

he physics of the VF process. This corresponds to a range of
nstable wavelengths from λc to infinity.

However, the geometry of the chromatographic column dic-
ates its own range of permitted wavelengths. The LSA approach
escribed above relies on the assumption that Darcy law is valid
or describing the flow inside the column. As noted in Section
.1, this is possible if one regards the porous medium with a

cale larger than the size, λμ, of the representative elementary
olume, above which the microscopic details of the packing are
moothed. This fixes an upper limit, kμ = 2�/λμ, to the permitted
avenumbers. On the other side of the spectrum, only fingers
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ith a wavelength smaller than the column diameter dc will be
bserved, which fixes a lower geometrical cut-off wavenumber
g = 2�/dc below which all unstable wavenumbers cannot be
xcited. For the typical analytical column considered in Table 1,
ssuming λμ = 5dp [59], the range of wavelengths authorized
y the geometry of the system extends from λμ = 25 �m to
g = 4600 �m. It is seen that, for the three values of R considered

n Table 1, the most probable finger wavelength lies above λμ

nd well below λg. Therefore, in these cases, the geometry of the
olumn does not hamper the development of the VF instability.

Several particular situations resulting from the interplay of
he constraints of the physics and of the system geometry can
e encountered. For large viscosity ratios (large R values), it
ight happen that λm, which is proportional to 1/R, becomes

ower than λμ. For the typical system considered in Table 1, this
ould happen for R ≥ 2.44, i.e. η1/η2 ≥ 11.5. In these cases,

he physics of the VF phenomenon becomes more complex
o investigate, even in the linear regime, since the Darcy law
s not applicable at the required scale. Besides, for very nar-
ow columns, no fingering will be observed even in presence
f unfavorable viscosity ratios if λg < λc. As seen in Table 1,
or R = 0.307, this is the case if dc < 82 �m. This observation
xplains why Fernandez et al. [42] used a column made of a
arge number of parallel capillaries which are slurry packed for
educing VF. However, the technological difficulties associated
ith the identical packing of the capillaries and with the even

ample distribution across the capillary assembly limit the appli-
ation of this column design. The limiting column diameter for
hich λg is equal to λc becomes smaller when R increases, but

hen λg becomes closer to λμ, as the number of particles per
olumn diameter becomes smaller. When this number becomes
maller than about five, λg becomes smaller than λμ and the
F phenomenon, if present, cannot be described by the model
sed in Section 3.1. On the other side, for preparative chro-
atography, for which dc, and hence λg, is large, λm is well

maller than λg as long as the viscosity ratio is reasonably large.
his explains, on the basis of pure LSA arguments, why VF

s of increasing importance in columns of increasing diameter.
n the nonlinear regime, the effects of VF last longer if more
ngers are present at onset in larger columns, which explains
hy VF is expected to be of crucial importance in preparative

hromatography.

.3. Comparison with experiments

Although evidence of the occurrence of VF in chromato-
raphic columns is known since the sixties in the SEC mode
11] and since the nineties in the RPLC mode [35], there is
o quantitative data over the numbers, wavelengths and growth
ates of fingers in the chromatographic literature. In some sit-
ations, the appearance of multiple peaks or of bumps on the
hromatographic peak profile recorded at the column outlet is the
ignature of the VF phenomenon. Nevertheless, in some cases,

few visualization studies have demonstrated that VF clearly

ccurs within the chromatographic column but is not detected
n the chromatographic peak profile, although it has contributed
o increase the peak width [39,47].

t
a
f
o

gr. A 1149 (2007) 254–273

In spite of the absence of quantitative data on the VF charac-
eristics, it is worth to examine the influence of various operating
arameters on the VF pattern in the optical visualization exper-
ments of Shalliker and coworkers [45–48] at the light of the
heoretical results presented above. These experiments were per-
ormed by injecting a sample in a packed glass column filled with
mobile phase, the refractive index of which is equal to that of

he packing, hence rendering the column transparent. For better
isualization of the VF pattern, the sample has a lower viscosity
han the eluent, hence the fingers develop at the leading edge of
he sample zone, as very clearly illustrated in the various pho-
ographs. It was found on images taken at the same position
long the column that the growth of the fingers increases with
ncreasing flow rate (Fig. 3 of [45]). This appears to be in contra-
iction with the expectation derived in Section 4.2 on the basis
f the linearity of the ωm versus ν curve in Fig. 11. However,
he experiments were performed in a very low ν range, from
.3 to 2, and a close look at Fig. 11 shows that, in this ν range,
m increases faster than ν, hence ωmt, which is proportional to
m/u, increases with the flow velocity, in agreement with the
bservations. In addition, in this comparison, it should be kept
n mind that the plate height parameters of the experimental
olumn may not be similar to those used for building Fig. 11.

The influence of the viscosity contrast on the finger charac-
eristics is clearly apparent on the photographs of Fig. 4 of [47].
xperiments were performed at R-values of 0.10, 0.21, 0.37,
.82 and 1.5. In spite of the fact that some caution is required
n interpreting the photographs since they are 2D projections on
photographic plate of a 3D VF pattern and that the dynamics
ight already be in the nonlinear regime, the length of the fingers

nd their number increase very clearly with increasing R. This is
ualitatively in agreement with the expectations. Indeed, at the
nset of VF, the number of fingers in the column cross-section
hould be proportional to k2

m, hence to R2, and their length pro-
ortional to exp(ωmt), hence to exp(R2). That the finger length
ncreases with time is clearly observed in the photographs of
ig. 5 of [47].

The finger width is reported to be between one-quarter and
ne-half of the column radius in [45], i.e. between 2.1 and
.3 mm for the photographs of Fig. 5 of [45] obtained at a R-value
f 0.77 for a mean particle size of 21 �m. It is seen from Fig. 10,
t a ν value of 1, that km should be equal to 0.30R/dp, which
ives a wavelength of 0.6 mm. This is smaller than the reported
alue, but still of the same order of magnitude. This discrep-
ncy may come from the fact that the plate height parameters
onstants A–E in the plate height Eqs. (48) and (49) are quite dif-
erent from typical ones. Besides, and most likely, the reported
nger widths were measured in conditions where the VF pattern

s well developed and where the linearity assumptions of the
SA model are no longer fulfilled. It is well known that, when

he VF dynamics becomes nonlinear, the dynamics is dominated
y coarsening: fingers tend to merge together, which leads to a
onstant increase of the finger wavelength and a decrease in the

otal number of fingers [6,55,79]. As the fingers of Fig. 5 of [45]
re most likely in the nonlinear regime (coarsening is visible
rom one plate to another) it is then logical that their wavelength
bserved on the photograph is larger than the value predicted at
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nset. In this perspective, careful experimental measurements
f the change of the averaged wavelength of the fingers as a
unction of time would be most welcome.

.4. Start of the viscous fingering phenomenon and
nfluence of the noise

The simple model described in Section 2.1 describes how a
erturbation on the position of the interface between two flu-
ds can give rise to the VF phenomenon and the LSA provides
he growth rate of any initial wavy noise on the step interface
etween the two fluids. Hence the question arises of what is
riggering the initial perturbation or where does the noise come
rom.

In fact, even if the injection device is able to deliver a per-
ectly planar initial front, there are concentration fluctuations
f the interface arising from the thermodynamic noise, linked to
he thermal motions of the molecules. Even if infinitesimal, such
noise, which is always present in the experiments, is ampli-
ed provided that its characteristic length scale is larger than

he critical one, λc. Such a noise is random in nature. Besides, a
erturbation can be triggered by any accidental change in ambi-
nt conditions, such as, for instance, a slight temperature or
ressure change, a mechanical vibration of the table or of the
round, slight fluctuations of the electrical power supply which
ay perturb the operation of the flow delivery system. All these

ources of fluctuations are uncontrolled and occur randomly.
he resulting flow fluctuations are therefore irreproducible. This
xplains why the finger pattern in visualization experiments or
he chromatographic peak shapes, when VF occurs, were some-
imes lacking reproducibility [33–37,45,48]. In addition, a little
erturbation of the interface could clearly come from an irregu-
ar packing. In that case, the porous medium is not homogeneous
nd its permeability becomes a function of space. The influence
f spatial variations of permeability on fingering has already
een studied analytically and numerically in the past [41,80–83].
uch a situation is clearly more complicated than the situation
e want to address here and moreover might lead to think that
ngering is driven by heterogeneities while it is driven by viscos-

ty differences. Still, if such heterogeneities are the main source
riggering the flow perturbations, the instability is expected to
e reproducible, at least, at its onset, since these heterogeneities
re present at the same location when experiments are repeated.
his might also be the case when VF is occurring with column
eaders with unperfect frit elements.

.5. Comparison of the chromatographic and VF time and
ength scales

The physical models of the viscous fingering instability as
ell as many other hydrodynamic instabilities describe the
nset of the instabilities in terms of dispersion relations, growth
ates and wavenumbers (or wavelengths). Still, in the chromato-

raphic context, the amplitude is of crucial importance as it
etermines the extent of the contribution of the instability to
eak broadening and, hence, to the loss of chromatographic
esolution.

b
F
h
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The LSA provides the initial growth rate of the perturbations.
hus, the question arises of the value of the initial amplitude, φ,
f the perturbations. In a porous packing, it seems reasonable
o scale the value of φ for the concentration perturbation of the
nterface to the particle size, dp:

= βdp (53)

here the value of the numerical constant β is expected to be
lose to 1 [84]. The knowledge of the exact value of β is not cru-
ial. Indeed, as the perturbation grows exponentially, it becomes
mplified by a factor 103 after a time equal to 7τVF. Therefore,
ven if the actual value of β is as low as 10−3, it takes a time
nly 7τVF longer for the perturbation to reach a certain ampli-
ude than if β is equal to 1. When the VF characteristic time, τVF,
s as short as those values reported in Table 1 (about 50 ms for
= 1), such a time delay is insignificant compared to the typical

esidence time of the sample in the column. For operating condi-
ions selected in Table 1, the hold-up time is 105 or 175 s for a 15
r 25 cm long column, respectively. Nevertheless, the influence
f VF on the peak shape may not be perceptible if τVF is not
uch smaller than to, i.e. for small R-values since τVF is propor-

ional to 1/R2. In conditions of Table 1, τVF/to (for a 15 cm long
olumn) becomes larger than 5% for R smaller than 0.10, i.e.
1/η2 smaller than 1.1. A 10% difference in viscosity between
ample and eluent was the limit above which a significant loss
n efficiency was observed by Cherrak et al. [34]. Besides, this

ay explain that VF was not (or only little) observed for the
owest R-values in Catchpoole et al. [47] experiments, keeping
n mind that their operating conditions were different from those
f Table 1. Still, for moderate and large R-values, the perturba-
ions grow very fast and are much likely to influence peak shape
nd broadening. For instance, for R = 0.3 (η1/η2 = 1.35), in con-
itions of Table 1, it takes only 4.6 s for a perturbation to grow
rom one particle diameter (5 �m) to 1 cm, a length clearly dis-
inguishable in the optical system of Shalliker and coworkers
45–48].

We have noted in Section 3.1 that the LSA, which deals
ith one interface, can be considered as applicable to chro-
atography as long as the two interfaces of the sample plug

o not interact, i.e. as long as the time is shorter than about
2
inj/(32Dax). This time, obviously, depends on the injection
olume. In conditions of Table 1, for a typical injection volume
f 20 �l, the length of the sample plug within the column is
.17 cm, and the time of persistence of the injection concentra-
ion plateau is equal to 9.7 s. It is therefore not short compared to
he above time of growth of the instability. Therefore, in practice,
his finite length of the sample plug is not limiting the application
f the LSA for a single unstable interface to the chromatographic
ituation.

.6. Origin of viscosity contrast in liquid chromatography
In the physical model on which this study is based, the insta-
ility at the interface between two fluids, 1 and 2, as shown in
ig. 1, was described in the linear domain. In the discussion, we
ave considered that this is applicable to the chromatographic
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ituation where that interface is the unstable interface between
he sample and the eluent, i.e. the rear interface if the sample is

ore viscous than the eluent and the front interface in the oppo-
ite case. The concentration c is the mole fraction of fluid 1 in
he binary fluid mixture. In practice, the sample is never a pure
hemical species, but contains at least two chemical species, the
ample solvent and a solute (when chromatography is performed
or separation purposes, there are of course several solutes in
he sample solvent). Therefore, two limiting situations can be
ncountered: case (a), the sample solvent is identical to the elu-
nt (they may be pure chemical species or mixtures) and the
olute is the source of the increase of the viscosity of the sam-
le; case (b), the sample solvent is different from the eluent and
as a viscosity sufficiently different from that of the eluent in
rder to give rise to the VF phenomenon, the solute being a pas-
ive species as far as the viscosity of the sample is concerned.
he first situation is that mostly encountered in SEC, the second
ne being that occurring in RPLC [35–37,48].

The ability of a solute to enhance the viscosity of a solution
s reflected through its intrinsic viscosity, [η], defined as [85a]:

η] = lim
cm→0

(η/ηo) − 1

cm
= lim

cm→0

ln(η/ηo)

cm
(54)

here cm is the mass concentration of the solute in the solution
in g ml−1), η and ηo the viscosities of the solution and of the pure
olvent, respectively. In the situation of case (a), it appears by
omparing Eqs. (20) and (54) that, for highly diluted solutions:

= [η]cm,inj (55)

here cm,inj is the mass concentration of the solute in the
njected sample. In the case of solutions of homologous
eries, such as linear homopolymers, the intrinsic viscosity is
elated to the molar mass, M, of the solute according to the

ark–Houwink–Sakurada equation:

η] = KMα (56)

here the constants K and α vary with polymer or homologous
eries type, solvent and temperature [30b,85b]. The R-value for
he solution depends on both the solute molar mass and its con-
entration in the injected sample. The molar mass, Mreq, required
o reach a certain value of R is then given as:

req =
(

R

Kcm,inj

)1/α

(57)

or instance, for a typical polymer concentration in the injected
ample of 0.001 g/ml, the required molar mass for reaching
= 0.2 (and thus [η] = 200 ml g−1) is calculated to be equal to

.5 × 105 g mol−1 for polystyrene in toluene at 30 ◦C and to

.5 × 105 g mol−1 for polyethyleneoxide in water at 30 ◦C [86].
lthough the values of the Mark–Houwink–Sakurada parame-

ers of other solute/solvent systems may be quite different from
hese ones, these calculations illustrate that rather high solute
olar masses are required to get a sufficient intrinsic viscos-
ty for observing the VF phenomenon. This is why VF arising
ith relatively diluted solute/eluent systems has been mainly
bserved in SEC of high molar mass polymer solutions.

u
i
V
r
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In other LC retention modes, VF is encountered in case (b)
ituations, when the viscosity contrast arises essentially between
he sample solvent and the eluent, the solutes of relatively low

olar masses being at a dilution level such that they have no sig-
ificant influence on the viscosity of the solution. In that case,
s far as VF is concerned, the system is again, as above, a binary
ixture. However, the relatively low molar mass of the sample

olvent, and its associated generally low intrinsic viscosity, is
ompensated by its rather large mass concentration in the eluent.
or instance, R = 0.2 is reached for a sample solvent concentra-

ion of 0.067 g ml−1 for methanol in water or of 0.082 g ml−1 for
lycerol in water. Then, the influence of the VF perturbations on
he solute peak shapes is likely to depend on the retention factor
f the solute. Unretained solutes with dispersion characteristics
imilar to those of the sample solvent will be affected as this
olvent by the VF phenomenon. Instead, the bands of highly
etained solutes, which are soon disengaged from the sample
olvent band as they migrate along the column, are likely to be
ittle perturbed by the VF phenomenon affecting this solvent
and. The discussion on the influence of the retention factor
n the solute peak shapes, although of primary importance for
he significance of the VF phenomenon on the chromatographic
eparation, is behind the scope of the present study and will be
resented in a forthcoming publication.

In the RPLC mode, eluents and sample solvents are frequently
ater–methanol or water–acetonitrile solutions of various

ompositions. Such solutions may have a non-monotonic
iscosity–concentration profile (whether this profile is mono-
onic or not depends on the compositions on the eluent and
f the sample solvent). Manickham and Homsy [55] have
hown that, in the particular case of isotropic dispersion
ε = 1), the dispersion relation for fluids with a non-monotonic
iscosity–concentration profile, as well as for monotonic ones
hich do not follow Eq. (20), is still expressed by Eq. (37) in
hich R is replaced by the parameter Λ defined as:

= η2

η1 + η2

[
d(η/η2)

dc

∣∣∣∣
c=0

+ d(η/η2)

dc

∣∣∣∣
c=1

]
(58)

t can be verified that, for the particular case where η(c) is given
y Eq. (20), one has Λ = R. The above result can be extended
o any value of ε. Therefore, the results presented in this study
egarding the growth rates, wavenumbers or wavelengths, and
ime scales, as functions of R at the onset of VF for an unstable
tep interface can be extended to any eluent-sample mixture by
eplacing R by Λ in the corresponding expressions.

.7. Effect of the sample volume

As discussed above (especially in Section 5.5), since the LSA
rovides informations on the early times of development of the
F instability, it is limited to the description of what happens

t that sample-eluent interface where the viscosity contrast is

nfavorable and triggers the instability. It can therefore not take
nto account the influence of the injected sample volume on the
F pattern at the onset of VF. Nevertheless, if during the linear

egime of growth of the instability, the fingers growing from one
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nterface reach the other sample-eluent interface, their growth
ill not be that of a single interface anymore. An estimate of

he limiting time, tlim, at which this would happen if the finger
rowth was still occurring in the linear regime can be obtained
y combining Eqs. (28), (52) and (53):

lim = 1

ωm
ln

(
Linj

βdp

)
= τVF ln

(
Linj

βdp

)
(59)

or a typical injection volume of 20 �l and column characteris-
ics reported in Table 1, taking β = 1 for the initial amplitude of
he perturbation, this limiting time is 5.8 times larger than the
haracteristic VF time. This time, like τVF, is proportional to
/R2.

It is, however, likely that, in usual chromatographic condi-
ions, this limiting time exceeds the transition time at which the
nger growth ceases to occur in the linear regime for which the
SA is applicable, i.e. at which fingers cease to increase expo-
entially as time elapses. The computation of this time requires
n elaborate treatment which is out of the scope of the present
tudy. Still, the influence of the sample volume has already been
llustrated by numerical simulations in the nonlinear regime [79].

. Conclusion

The phenomenon of viscous fingering occurs as soon as a
uid is displaced by a less viscous one in a porous medium (for
uids with a monotonic viscosity–concentration profile). Such a
ontrast of viscosity is most generally present between the car-
ier liquid and the sample in a liquid chromatographic system.
his VF phenomenon leads to peak shape distortion and band
roadening as has been observed on recorded peak shapes at
he column outlet or by various methods of in-column visual-
zation. Still, the detrimental influence of this phenomenon on
he separation performances is rarely considered when selecting
he operational conditions for separations.

The linear stability analysis of this phenomenon at its onset
hows that the interface is unstable as soon as R (or Λ) >0. It
rovides informations on the most probable values of the rate
f growth of the perturbations and on their wavenumbers (i.e.
n their extension in a direction transverse to that of the flow)
hen the phenomenon starts, i.e. when they are the largest. In
ractice, these quantities can easily be computed by means of the
ingle curves for ωm and km in Figs. 10 and 11, for any combina-
ion of the carrier velocity, the particle size, the solute diffusion
oefficient and the sample/eluent viscosity ratio. On the basis
f the typical values of the operating parameters encountered in
nalytical LC, we have shown that, for a R-value of 0.2 (i.e. a
iscosity difference of only 22% between sample and eluent), a
erturbation of the size of one particle should reach an ampli-
ude of 1 cm in about 7 s which is well shorter than the typical
old-up time. This illustrates that the contribution of VF to the
eterioration of the performances cannot be ignored.
Therefore, quantitative experimental studies of VF in chro-
atography would be welcome. By measuring the time

ependence of the fingers wavelength and of the logarithm of
he amplitude of the fingers, they would allow to investigate the

t
t

t
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rowth rate and most unstable wavenumber characterizing the
nset of the VF instability. Beyond this linear regime, a mea-
ure of these quantities on longer time scales would allow to
ollow the transition from the linear regime, where the LSA is
pplicable, to the nonlinear regime where fingers are sufficiently
eveloped to interact together. Simulations of this nonlinear
egime in chromatographic conditions will be presented in a
orthcoming publication.

omenclature

constant of the axial plate height equation (Eq. (48))
p initial amplitude of the perturbation

constant of the axial plate height equation (Eq. (48))
concentration (mole fraction) of the downstream, more
viscous fluid in the binary fluid mixture

m mass concentration of the solute in the solution (in
g/ml)

m,inj mass concentration of the solute in the injected sample
constant of the axial plate height equation (Eq. (48))

p particle size
constant of the transverse plate height equation (Eq.
(49))

ax axial dispersion coefficient
tr transverse dispersion coefficient

constant of the transverse plate height equation (Eq.
(49))
gravitational acceleration

ax reduced axial plate height
ax axial plate height

tr reduced transverse plate height
tr transverse plate height

wavenumber defined by Eq. (30)
constant of the Mark–Houwink Eq. (55)

c critical (or cut-off) wavenumber
g geometrical low-value cut-off wavenumber imposed by

the column diameter
m most probable (or most dangerous) wavenumber
p column permeability
x, ky wavenumbers in the x and y directions, respectively
μ cut-off wavenumber arising from the microscopic scale

of the porous medium
c column length
inj length occupied by the sample plug in the column just

after injection
ref reference length defined by Eq. (30)

pressure
in inlet pressure
out outlet pressure
z pressure at position z

flow rate
logmobility ratio defined by Eq. (22)

time

lim limiting time of growth of the instabilities in the linear
regime, expressed by Eq. (59)

o column hold-up time
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ref reference time defined by Eq. (31)
A flow velocity in section A
B flow velocity in section B
c critical velocity (Eq. (10))
, y transverse directions perpendicular to the flow direc-

tion
position along the column or the porous medium; flow
direction

reek symbols
constant of the Mark–Houwink–Sakurada Eq. (55)
numerical constant in Eq. (53)
flow orientation indicator

z length of the perturbation
P pressure drop along the column
Papp applied pressure drop
Pstat hydrostatic pressure
η viscosity difference
ρ density difference

dispersion ratio defined by Eq. (36)
tot total porosity of the column

fluid viscosity
1 viscosity of fluid 1
2 viscosity of fluid 2
o viscosity of the pure solvent
η] intrinsic viscosity of a solute, defined by Eq. (54) (in

ml g−1)
generalized viscosity parameter for any viscosity–
concentration profile, defined by Eq. (58)

c critical (or cut-off) wavelength
g geometrical high-value cut-off wavelength imposed by

the column diameter
m most probable (or most dangerous) wavelength
μ low-value cut-off wavelength arising from the micro-

scopic scale of the porous medium
reduced velocity
fluid density

1 density of fluid 1
2 density of fluid 2
VF characteristic onset time of the VF pattern

initial amplitude of a perturbation
amplitude of a perturbation
growth rate of the instability

m maximum growth rate of the instability

ubscript
base state parameters (in absence of instabilities)

uperscript
dimensionless quantities
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