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Physical theories of fundamental significance tend to be gauge theories.
These are theories in which the physical system being dealt with is de-
scribed by more variables than there are physically independent degree
of freedom. The physically meaningful degrees of freedom then reemerge
as being those invariant under a transformation connecting the vari-
ables (gauge transformation). Thus, one introduces extra variables to
make the description more transparent and brings in at the same time
a gauge symmelry to extract the physically relevant content. It is a
remarkable occurrence that the road to progress has invariably been to-
wards enlarging the number of variables and introducing a more power-
ful symmetry rather than conversely aiming at reducing the number of
variables and eliminating the symmetry [1]. We claim that the poten-
tials of Classical Electromagnetism are not indetermined with respect
to the so-called gauge transformations. Indeed, these transformations
raise paradoxes that imply their rejection. Nevertheless, the potentials
are still indetermined up to a constant.

1 Introduction

In Classical electromagnetism, the electric field E and the magnetic field
B are related to the scalar V' and vector A potentials by the following
definitions [2] :

0A

E=——"-VV and B=VxA (1)

One century ago, H.A. Lorentz noticed that the electromagnetic field
remains invariant (E’ = E and B’ = B) under the so-called gauge trans-
formations [3]:
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A'=A+Vf and V’:V—% (2)

where f(z,t) is the gauge function.

Hence, this indeterminacy is believed to be an essential symmetry of
Classical Electromagnetism [3]. Moreover, it is often related to the as-
sertion that the potentials are not measurable quantities contrary to the
fields. Hence, one must specify what is called a gauge condition, that is
a supplementary equation which is injected in the Maxwell equations ex-
pressed in function of the electromagnetic potentials in order to supress
this indeterminacy. It is common to say that these gauge conditions
are mathematical conveniences that lead to the same determination of
the electromagnetic field. In this context, the choice of a specific gauge
condition is motivated from the easiness in calculations compared to
another one. In a certain manner, although their mathematical expres-
sions are different, it is supposed that they are equivalent as the fields
are invariant with respect to the gauge transformations. Furthermore,
no physical meaning is ascribed to the gauge conditions as the poten-
tials are assumed not to have one... Despite these assertions which are
shared by a large majority of physicists, a definition for the potentials
dating back to Maxwell was recalled recently and which resolves, accord-
ing to our point of view, the question of indeterminacy by giving them
a physical interpretation. Moreover, we showed that the Coulomb and
Lorenz gauge conditions were, in fact, not equivalent because they must
be interpreted as physical constraints that is electromagnetic continu-
ity equations [4, 5]. In addition, we were able to demonstrate that the
Coulomb gauge condition is the galilean approximation of the Lorenz
gauge condition within the magnetic limit of Lévy-Leblond & Le Bellac
[8, 7, 6]. So, to ”make a gauge choice” that is choosing a gauge condition
is, as a consequence of our findings, not related to the fact of fixing a spe-
cial couple of potentials. Gauge conditions are completely uncorrelated
to the supposed indeterminacy of the potentials. Hence, we proposed to
rename ”gauge condition” by ”constraint” [4, 5, 6].

In this article, we would like to reexamine the common belief con-
cerning the assumed indeterminacy of the potentials with the assumption
that the ”constraint” do not fix the value of the potentials. Indeed, we
will show that gauge transformations introduce paradoxes which imply
their rejection. This point of view was expressed already by the school
of De Broglie : by the master himself [9] or by his followers like Costa
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De Beauregard [10]...

2 The case of a stationnary electric field

Imagine a one dimensional stationary problem defined by the following
potentials :

A=0 and V(x)=—-Ex (3)
One finds easily :
B=0 and E = Fex (4)

The electric and magnetic fields are constants in time.

Now, we can perform a gauge transformation with this particular
gauge function :

flz,t) = —FEuxt (5)

The new potentials are :

of
ot
Of course, the electric field is unchanged but is the underlying physics
expressed by the potentials the same 7 We believe that an electric field
can be created by two very different physical processes that is time varia-
tion of a vector potential (like in induction phenomena) or space variation
of a scalar potential (like in the electron gun). We are in front of the first
paradox : how can a physical quantity (here, the vector potential) be a
function of time in a stationary problem ? In the case of a capacitor for
example, the static electric field is created by static electric charges on
the plates of the capacitor. If one admits that one can describe this static
electric field by a time-dependent vector potential, one must admit that
the sources (charges or currents) of this electric field are time-dependent
which is not experimentally the case.

A'=-Et and V' = 0 (6)

The unconvinced reader could argue that we proposed a gauge func-
tion which depends explicitly on time in a stationary problem. As a
matter of fact, if f(z,t) does not depend on time, the scalar potential is
invariant V/ = V and so is not indetermined with respect to the gauge
transformations.
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In a stationary problem, the electric field is expressed as E = —VV
whereas the magnetic field is still defined as previously. In this case, the
vector potential could still be indetermined. So, are two vector potentials
differing from a gradient physically equivalent ?

3 The case of a vector potential equal to a gradient

Now, one will apply the so-called Stokes-Helmholtz-Hodge decomposi-
tion to the vector potential :

A= Alongitudinal + Atransverse (7)

with :
A=Vg+VxR (8)

where g is a scalar and R a vector. The decomposition is unique up to the
additive gradient of a harmonic function with the following properties
[11]:

V-iAharmonic =0 Vx Aharmonic =0 (9)

If we use gauge transformations, we can notice that only the longi-
tudinal (and/or harmonic) part of the vector potential and the scalar
potential are affected by these transformations. The transverse part re-
mains unchanged. Moreover, the magnetic field depends only on the
transverse part. So, if there is indeterminacy, it must imply indetermi-
nacy of the longitudinal (and/or harmonic) part. As a consequence, the
longitudinal (and/or harmonic) part cannot have a physical meaning if
it is indetermined with respect to the gauge transformations.

Usually, the vector potential is equal to its transverse part in most
of the problems of Classical Electromagnetism. For example, the vector
potential for a magnet is expressed by :

Ho m
A= Atransverse = EV X (7) (10)
where m is the strengh of the poles (the so-called magnetic mass or
moment).

In this case, we observe a magnetic field by definition. And, if the
vector potential varies in time, it creates an electric field again by def-
inition : the time integral of the electric field could be considered as
a direct measure of the vector potential without the presence of static
charges that is of a scalar potential. If not, one can use the superposition



The gauge non-invariance of Classical Electromagnetism 5

theorem to evaluate first the part of the electric field associated to the
static charge (that is the scalar potential) and then the part associated
to the current (that is the vector potential) if and only if the separation
is possible...

At this stage, the question is to know whether a vector potential only
equal to a gradient can have a physical effect when the electromagnetic
field is null.

Outside a solenoid, the vector potential is precisely equal to a gradi-
ent as expressed by the following formula in cylindrical coordinates (r, 6)
2] :

A= geg = @7% (11)

27mr 27

where @ is the flux of magnetic field inside the solenoid or the circula-
tion of the vector potential outside the solenoid. More precisely, its curl
and divergence are null so the vector potential outside a solenoid is of a
harmonic-type according to the indeterminacy of the Stokes-Helmholtz-
Hodge decomposition [11]. Moreover, we point out forcefully that the
mathematical indeterminacy due to the gauge transformations is dis-
carded by the boundary conditions which give a physical determination
to the vector potential outside a solenoid : the vector potential vanishes
far from its current sources. The external region of a solenoid is one
of the numerous experimental configurations to observe the well-known
Aharonov-Bohm effect [12]. So, we are in front of the second paradox
: the Aharonov-Bohm effect contradicts the fact that a vector potential
equal only to a gradient could not have a physical effect.

However, one usually argues that the Aharanov-Bohm effect is a
quantum effect and that the potentials can have a meaning in quan-
tum physics and not in classical physics. Moreover, the prediction of
the Aharonov-Bohm effect pointed out an unanticipated way in which
the vector potential can affect a measurement on a charged particle in
a region of zero field, but the predicted phase is the result of a path
integral which insures that the result is gauge independent : it is not the
result of a local (gauge-dependent) value of the vector potential.

Why add in the path integral a (mathematical) gradient to the vector
potential which is already a (physical) gradient ?

A vector potential equal only to a gradient should not have a phys-
ical effect as imply by gauge transformations because we could cancel
the longitudinal (and/or harmonic) part by adding the gradient of the
appropriate gauge function.
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In the solenoid example, we can take as a gauge function f(r,0,t) =
—®0 /27 and still there is experimentally an effect despite the fact that
all the potentials and so the fields cancel outside the solenoid.

However, one can found in the litterature some theoretical arguments
against this gauge transformation according to the fact that the existence
of the solenoid implies that the the space is not simply-connected. Yet, it
is true that in a multiply connected region, the function o which charac-
terises the longitudinal (and/or harmonic) part of the vector potential in
the general case becomes multivalued but the longitudinal (and/or har-
monic) part of the vector potential (the only one which is different from
zero outside the solenoid) is not multivalued as one take the gradient of
.

Another argument is to remember that the gauge transformations
were introduced by Lorentz without any constraint on the connectness
of the space.

Having the Aharonov-Bohm effect in mind, we can recall now a very
simple experiment which cannot be explained with Maxwell equations
expressed in function of the electromagnetic field only and which shows
the physical character of a longitudinal (and/or harmonic) vector poten-
tial in classical physics.

Let’s take again the geometry of the solenoid. If the current varies
with time the magnetic field is still null outside the solenoid but because
the vector potential is not null outside the solenoid and varies with time,
it creates an electric field outside the solenoid. If we denote the flux of
the magnetic field inside the solenoid (or the circulation of the vector
potential outside the solenoid) ® = LI where L is the inductance of the
solenoid and I the current intensity, the electric field is expressed by :

0A L dI
o T o ar® (12)

If we apply Maxwell equations expressed in function of the fields with
the prescription that the magnetic field is null outside the solenoid, we
only find that the electric field is lamellar outside the solenoid which is
supposed to be infinite (V x E = 0 because 0B/dt = 0 even in this
time-dependent problem because B = 0 outside the solenoid)...

This experiment is carried out very easily. It demonstrates that a
vector potential only equal to a gradient can have a physical effect in
Classical Electromagnetism when it varies in time and thus creates by
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definition an electric field. Of course, for a finite solenoid, the leaking
magnetic field is not null outside the solenoid. However, it creates a
leaking electric field which is negligeable and opposite with respect to
the electric field created by the contribution of the vector potential due
to the ideal solenoid...

Another example of a physical vector potential which is equal to a
gradient appears in the well-known Meissner effect in supraconductivity
and it was discussed nicely by Tonomura [13].

4 The case of a uniform magnetic field

Another drawback of the gauge transformations can be illustrated by the
following example : one often finds in textbooks that we can describe
a uniform magnetic field B = Be, by either the so-called symmetric
"gauge” Ag = 1/2B X r or by the so-called Landau ”gauge” [3]. This
two ”gauges” are related by a gauge transformation :

1 1
A= §B X r = 5[—By7Bac70] (13)
becomes either :
A, =[0,Bz,0] or Ajz;=[-By,0,0] (14)

with the gauge functions +f = +ay/2.

However, there is no discussion in the litterature of the following is-
sue. As a matter of fact, if we consider a solenoid with a current along
ey, the magnetic field is uniform (along e,) and could be described by
the symmetric ”gauge” or the Landau ”gauge”. Yet, the vector potential
in the Landau "gauge” A, is along e, whereas the vector potential in
the symmetric gauge is along ey. We advocate that only the symmetric
”gauge” is valid in this case because it does respect the symmetry of the
currents (J = Jey) whereas the Landau ”gauge” does not. Moreover,
the symmetric ”gauge” (or the Landau ”gauge”) is not, in fact, a gauge
condition but a solution describing a uniform magnetic field under the
Coulomb constraint (V.A; = 0). In order to understand this last point,
one can picture an analogy between Fluid Mechanics and Classical Elec-
tromagnetism. Indeed, the solenoid is analogous to a cylindrical vortex
core with vorticity w and we know that the velocity inside the core is
given by u = 1/2w X r which is analogous to the symmetric gauge for
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an incompressible flow (V.u = 0). Outside the vortex core, the velocity
is given by [14] :
I've r
=—=—¢€ 15
27 2 (15)
where I is the flux of vorticity inside the vortex or the circulation of the
velocity outside the vortex. One recovers the analogue formula for the

vector potential outside a solenoid...

Of course, if the problem we are considering does not feature the
cylindrical geometry (two horizontal plates with opposite surface cur-
rents for example, analogous to a plane Couette flow [14]), one of the
Landau gauges A5 or Az must be used instead of the symmetric gauge
A, according to the necessity of respecting the underlying distribu-
tion/symmetry of the currents which is at the origin of both the vec-
tor potential and the magnetic field. To give a magnetic vector field
without specifying its current source is an ill-posed problem which was
interpreted so far by attributing an indeterminacy to the vector potential
which is wrong.

Now, how can we test experimentally this argument based on sym-
metry 7 If the current of the solenoid varies with time, it will create
an electric field which is along ey as the vector potential because the
electric field is minus the time derivative of the vector potential. If the
currents in the horizontal plates change with time, a horizontal elec-
tric field will appear for the same reason. The author rejects all the
arguments based on the fact that one can define through a gauge trans-
formations a time dependent scalar potential which would explain the
oberved electric field. Indeed, a scalar potential is physically defined
with respect to charge distributions and not current distributions.

Contrary to the common belief, it is possible to discriminate exper-
imentally between two vector potentials (related by a gauge transfor-
mation) creating a uniform magnetic field. We have shown that the
symmetry of the current source implies a certain distribution of the vec-
tor potential which is at the origin of an electric field when the intensity
is time-dependent. Its orientation is dictated by the vector potential
alone which, eventhough is not observable by itself, has observable con-
sequences.

5 Conclusions

What is the meaning of gauge transformations ? We believe that it is
only a structural feature (that is linearity) of the definitions of the po-
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tentials from the fields. The potentials of Classical Electromagnetism do
have a physical meaning as recalled recently [4, 5, 6, 15, 16] and should be
considered as the starting point of Classical Electromagnetism [6, 15].
If we defined the fields from the potentials and not the contrary, the
gauge transformations loose their sense because they imply the para-
doxes raised in this article. As a conclusion, we must reject gauge trans-
formations. Gauge invariance is preserved but in a weaker sense : the
potentials are defined up to a constant. This constant is equal to zero
when the sources are confined to a certain region of space : one assumes
that the potentials vanish at infinity far from their sources. If the do-
main is bounded like in a Faraday cage, the surface potentials are given
by the contribution of all the sources outside the region of interrest [17]
: one makes the assumption that their knowledge is not important as
one measures only differences of potentials according to their definition
in function of a constant of reference [6]. We recall for example that the
vector potential is an electromagnetic impulsion that is a difference of
electromagnetic momentum. In mechanics, a momentum is indetermined
as it is defined with respect to a reference but the impulsion constructed
from this momentum has a definite value so is not indetermined...
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