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ABSTRACT. Based on an analogy between Fluid Mechanics and Elec-
tromagnetism, we claim that the gauge conditions of Classical Electro-
magnetism are not equivalent contrary to the common belief. These
”gauges” are usually considered as mathematical conditions that one
must specify in order to solve any electromagnetic problem. Here, the
author shows that these conditions are physical constraints which can
be interpreted as electromagnetic continuity equations. As a conse-
quence, light cannot be considered as a pure transverse wave in vac-
uum from the point of view of the potentials. We discuss the (lack of)
meaning of gauge transformations.

1 Introduction

In Classical Electromagnetism, the generalized momentum p of a particle
with mass m and charge q moving at a velocity v in a vector potential
A is [1] : p=mv + ¢A. Hence, the vector potential can be seen as the
electromagnetic impulsion (per unit of charge) of the field. For example,
induction phenomena are due to the transfer of momentum from the
field to the charge via the vector potential. Simply speaking, the vector
potential is a kind of velocity up to a factor q/m. There is a long history
of papers ([2, 3] and references therein) and of books which advocate
forcefully a physical interpretation to the vector potential ([4, 5, 6, 7]
and references therein). One can define the vector potential at a point
M as the mechanical impulsion that an external operator must furnish to
a unit charge in order to bring it from infinity (where the vector potential
vanishes far from the currents) to the point M. The generalized energy
€ of the same particle in a scalar potential V is [1] : € = mv?/2 + ¢V.
Hence, the scalar potential can be seen as the potential energy (per
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unit of charge) of the field. For example, an electron is accelerated
in an electron gun and its gained energy per unit charge is the scalar
potential. Of course, the potentials are defined up to a constant and
the experimentalist sets by convention the scalar potential of a plate
in the electron gun to zero for instance. Similarly, one can define the
scalar potential at a point M as the mechanical energy that an external
operator must furnish to a unit charge in order to bring it from infinity
(where the scalar potential vanishes far from the charges) to the point
M.

Usually, in order to solve a problem in Electromagnetism, one must
specify what is called a gauge, that is a supplementary condition which
is injected in the Maxwell equations expressed in function of the electro-
magnetic potentials. Two gauge conditions were introduced in Classical
Electromagnetism [1] : V- A = 0 which is the Coulomb gauge, used
for example in magnetostatics, and : V- A + 1/c¢29;V = 0 which is
the Lorenz gauge. Here, ¢y, is the velocity of light [1] : ¢ = \/1/pq€0
where 1, and €y are respectively the permeability and the permittivity
of the vacuum. It is common to say that these gauge conditions are
mathematical conveniences that lead to the same determination of the
electromagnetic field. In this context, the choice of a specific gauge is
motivated from its conveniences in calculations !

We would like to underline that these gauges may not be equivalent

e From the mathematical point of view, the Coulomb gauge is the
approximation of the Lorenz gauge in the stationary case -which
is a well known result - but also when the velocity of light is taken
to be infinite (what this paper will demonstrate...).

e From the physical point of view, the gauges can be seen as electro-
magnetic continuity equations. To understand this last point, one
can use the following analogy with hydrodynamics.

2 The analogue proof of the non-equivalence between the
gauge conditions

In order to solve a problem in fluid mechanics, one must specify a phys-
ical constraint which tells us if the fluid flow is compressible or not. The
incompressibility constraint reads [8] : V - u = 0 whereas the compress-
ibility constraint is [8] : V-u+1/pD;p = 0 where D, = 9;() + (u- V)()
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is the so-called total derivative, u is the velocity of a fluid particle and
p its density. If the flow is not stationary and if one considers acous-
tic waves which are perturbations of the pressure, the density and the
velocity of the fluid around a basic state (subscript 0) p = po + 6p,
p = pg + Op and u =0+ 6u, one can evaluate the velocity of sound
by the following formula [8] : cs = \/Op/dp = /1/pk where k is the
compressibility of the fluid. The compressibility constraint becomes :
V - éu+ 1/c%0:(8p/py) = 0 which has a form equivalent to the Lorenz
gauge. If the velocity of sound tends to infinity, one recovers the incom-
pressibility constraint. The new result is that the Coulomb gauge would
imply that the velocity of light tends to infinity in a time dependent
problem when propagation is absent as in hydrodynamics [9]. Moreover,
if the flow is stationary, the compressibility constraint reduces to the
incompressibility constraint which is analogous to the Coulomb gauge.

3 The experimental proof of the non-equivalence between the
gauge conditions

Now, one can read in every textbooks of electromagnetism that we can
describe propagation of potential waves in either the Coulomb or the
Lorenz gauge because in any case the propagation of the electromagnetic
waves remains unchanged... We will show that the Coulomb constraint
cannot describe propagation at finite speed but instantaneous propaga-
tion in a coaxial cable.

What does it mean experimentally that a quantity propagates instan-
taneously? Imagine the following experiment. Let’s take a coaxial cable.
One can relate it to a function generator which delivers for instance a
scalar potential pulse of whatever shape : square, triangular... Exper-
imentally, the scalar potential seems to propagate instantaneously in a
short coaxial cable of one meter long. We are in the so-called quasi-static
limit where quantities are time-dependent but do not propagate (with
the help of the analogy, one understand that we should use the Coulomb
constraint). Experimentally, the scalar potential does not propagate in-
stantaneously in a long coaxial cable of one hundred meter long because
we are able to detect with an oscilloscope a time delay introduced by the
finite speed propagation of a pulse of scalar potential between the entry
and the exit of the cable. This last experimental fact is in contradiction
with the assertion that we can use Coulomb gauge to describe propa-
gation because the scalar potential is solution of a Laplace equation in
this gauge that is, it must propagate instantaneously [1]. From the anal-
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ogy, one concludes that we should use the Lorenz constraint to describe
propagation and not the Coulomb constraint. Of course, one also uses
Coulomb constraint in the time-independent case. A close look to the
range of validity of the so-called quasi-stationary approximation (cy, is
infinite) permits to understand that there is no contradiction with the
above statement concerning the fact that the potentials and the fields
can or can not propagate depending on the problem...

To conclude this part, whatever the potentials are undetermined or
not, the so-called gauges conditions seem to be physical constraints which
would tell us if the velocity of light is a relevant parameter or not (that
is finite or not) and not mathematical conditions to fix the potentials.
Indeed, depending on what type of phenomena you are studying, some
imply that the velocity of light is finite and some other do not. More
precisely, is there a consistent galilean electromagnetism (cy, is infinite)
coexisting with a relativistic electromagnetism (cy, is finite) ? This ques-
tion was addressed and answered for the fields by Lévy-Leblond & Le
Bellac [10] and it was revisited recently by Holland & Brown [11]. Our
paper extends these last works for the gauge conditions.

4 The mathematical proof of the non-equivalence between the
gauge conditions

As a matter of fact, Lévy-Leblond & Le Bellac have shown that the full
set of Maxwell equations has two well defined galilean limits which they
called the magnetic limit (used for example in Ohmic conductors and in
Magnetohydrodynamics ([12, 13]) : also called the magneto-quasistatic
approximation) and the electric limit (used for example in dielectrics and
in Electrohydrodynamics ([14, 13, 15]): also called the electro-quasistatic
approximation). The two limits are obtained by taking the velocity of
light as infinite. Contrary to mechanics which allows only one galilean
limit, the two limits of electromagnetism come from the fact that c¢; =
V' 1/pgeo can tend to infinity if either p, or €y tends to zero separately.
For example, the magnetic limit is the result of keeping p, constant
during the process while ¢y tends to zero.

Moreover, Lévy-Leblond & Le Bellac have derived the galilean trans-
formations for the potentials [10]. In the magnetic limit (u << ¢z, and
V << ¢p.JA|), they read : A* = A and V* = V — u.A whereas in
the electric limit (u << ¢z, and V >> cr.|A]): A* = A —u/c2V and
V* = V. Now, if we apply the limiting process used by these authors
(u << ¢ and V << ¢p.JA| or V. >> ¢1.|A]) to the Lorenz gauge
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which, we know, is Lorentz invariant (cj, is finite), we find that the
Lorenz gauge resumes to the Coulomb gauge in the magnetic limit and
that the Lorenz gauge remains the same in the electric limit. The Lorenz
(Coulomb) gauge is now covariant with respect to the ”electric” (?mag-
netic”) transformations of the potentials. The Coulomb gauge is the
only possible constraint that we can apply when we deal with Ohmic
conductors or in Magnetohydrodynamics that is within the range of the
magnetic limit. The Coulomb gauge cannot apply in the electric limit as
well as in relativistic electromagnetism which was not recognized before.
The important point is that the Coulomb gauge is obtained mathemat-
ically by a limiting process from the Lorenz gauge and is not indepen-
dent of the Lorenz gauge. We clearly state that it is hence forbidden to
plunge the Coulomb gauge which is galilean into the full set of Maxwell
equations which are relativistic contrary to what is stated in almost all
the textbooks. The Lorenz gauge describes both relativistic electromag-
netism and galilean electromagnetism within the electric limit and it
cannot apply in the magnetic limit.

Once again, the analogy can help us to grasp the underlying physics.
If a flow is said to be incompressible, the velocity of sound is considered to
be infinite. More precisely, the compressibility of the fluid tends to zero
while the density is kept constant. Moreover, we characterized usually
media where waves propagate by using the concept of impedance which
for an acoustic wave is Z; = pycs and for a light wave is Zr, = pgcr.
Hence, pg is the analogue of p,. Now, we can remark easily that the
magnetic limit is the analogue of an incompressible flow while there
is no mechanical counterpart for the electric limit. One understands
why the Coulomb gauge is the only gauge which does apply in Ohmic
conductors within the magnetic limit which are analogous to Newtonian
fluids in incompressible flow [9]. Recently, Brown & Holland [16] have
shown that the Schroedinger equation which is a galilean equation was
only coherent with the use of the magnetic limit which explains why we
use the Coulomb gauge with this equation when dealing with an electron
in a vector potential.

One century ago, H.A. Lorentz noticed that the electromagnetic field
remains invariant (E’ = E and B’ = B) under the so-called gauge trans-
formations [17] : A’ = A+ Vf and V' =V — 9,f where f(z,t) is the
gauge function. Hence, this indetermination is believed to be an essen-
tial symmetry of Classical Electromagnetism [17]. We showed that the
Coulomb and Lorenz gauges were not equivalent because they must be
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interpreted as physical constraints that is continuity equations. So, to
make a gauge choice is not related to the fact of fixing a special cou-
ple of potentials. Gauge conditions are completely uncorrelated to the
supposed indetermination of the potentials. The gauge choice must be
taken with respect to the type of electromagnetism we study that is rel-
ativistic or not by taking care also of the type of galilean limit. What
is the meaning of gauge transformations ? We believed that it is only a
structural feature (that is linearity) of the definitions of the potentials
from the fields. The potentials of Classical Electromagnetism do have a
physical meaning as recalled in the introduction. If we defined the fields
from the potentials and not the contrary, the gauge transformations loose
their sense.

As a conclusion, we propose to reject gauge transformations. Gauge
invariance is preserved but in a weaker sense : the potentials are defined
up to a constant. The proposed rejection of gauge transformations is not
new in the literature : it was foreseen by L. de Broglie in the application
of the principle of inertia of energy in relativity [18]. More recently, A.
Van QOosten proposed a non-gauge-invariant theory of electromagnetism
based on the Fermi Lagrangian which is a valid alternative to the stan-
dard approach as it makes the same experimental predictions [19].

5 The Nature of Light

Now, we can have a closer look to the way the propagation of light is
described usually. One can find for example in The Classical Theory of
Fields by Landau & Lifshitz [20] the following description. Thanks to
gauge invariance, one can take the Coulomb gauge V- A = 0 and the as-
sumption that the scalar potential is zero in order to describe light prop-
agation. As a matter of fact, one obtains : E = —0;A — VV = —0;A
and B = V x A. The vector potential (so the fields) is solution of
a propagation equation. From our point of view, this derivation is
misleading because the Coulomb gauge is not Lorentz invariant and
we advocated in this paper that it can not describe propagation (cr,
is infinite). Indeed, if we apply a Helmholtz decomposition to the
Lorenz gauge (cy, is finite), one finds : V - Ajongitudinal + 1/c20;V = 0
and independently : V - Ayransverse = 0. The magnetic field is :
B = VX Aransverse With : VX Ajongitudina = 0. The electric field writes
E= _8tA -VV = _atAtransverse with : atAlongitudinal +VV =0.

Indeed, concerning the nature of light, one can wonder if light should
still be considered as a transverse wave. As a matter of fact, the po-
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tentials do have a physical meaning in Classical Electromagnetism as
recalled in the introduction. Moreover, we gave a physical interpre-
tation of the gauge and particularly of the Lorenz gauge which im-
plies by Fourier transform : V = ¢pA, where x is the direction of
propagation of a plane light wave in vacuum (k = w/cr). Hence, if
we can say - as usual - that the longitudinal electric and magnetic
fields cancel (E, = —0;(Azcos(kx — wt)) — 0, (Veos(kx —wt)) = 0 and
B, = (V x A), =0 because V = ¢ A,), the last equation shows that,
under the Lorenz constraint, the vector potential has a non-zero longi-
tudinal component which is a gradient. As pointed out by B. Leaf, the
time-like and longitudinal potential components constitute a Lorentz-
covariant null vector which is not amenable to boson quantization as the
transverse components [21]. So from the point of view of the potentials
from which the fields derive, light is neither a transverse or a longitudinal
wave : it is a composite wave...

Once again, one can understand the longitudinal propagation for
light with the sound analogy. By Fourier transformation of the con-
tinuity equation for the fluid, one obtains : ép/p, = csdu,. One re-
calls that the propagation of sound waves is vorticity-free (B, = 0) and
that one gets the propagation equations by combination of the continu-
ity equation with the linearized Navier-Stokes equation (E, = 0) [8] :
0dbu + V(6p/py) = 0. The longitudinal propagation for light is not in
contradiction with polarization experiments which do show that light can
not be a pure longitudinal wave but that the electric field is transverse
despite the fact that the vector potential has a longitudinal component...

The longitudinal propagation of the potentials is also a feature of
electromagnetic waves in a coaxial cable with the difference that the
longitudinal vector potential is not a gradient in this case [7, 13]. The
unconvinced reader could argue that all the results regarding light can
be derived without any reference to the potentials. Formerly, it is right
but there is an implicit statement when we use the full set of Maxwell
equations to derive light propagation that is we consider the velocity of
light as finite. That’s why we advocated in this paper that it is equivalent
to use the Lorenz gauge.

6 Conclusions

In conclusion, one can understand that the gauges express electromag-
netic continuity from a physical point of view based on an analogy with
hydrodynamics. From this analogy, we concluded that the Lorenz gauge
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is more fundamental, in general, than the Coulomb gauge which is an
approximation for the stationary case and for the time-dependent case
when one neglects the propagation of electromagnetic waves and more
generally relativistic phenomena within the magnetic limit. From the
pedagogical point of view, the analogy facilitates the use and understand-
ing of the vectorial operators and allows to find solutions of electromag-
netic problem much more readily in terms of hydrodynamics equivalent
[9].

The author is fully aware that the conclusions of this paper are con-
troversial as they defy old-established opinions about the non-physical
character of the potentials as well as the so-called gauge conditions. Any-
way, it is the author’s belief that Electromagnetism cannot continue to
be transmit to young generations without understanding the fundamen-
tals of this discipline and in particular of the potentials which are the
primary quantity in relativity and quantum field theory. Let us remind
James Clerk Maxwell’s own words : [the vector potential] is the mathe-
matical quantity which can be considered as the fundamental quantity of
the electromagnetic theory ([4], Vol.2, p. 187). It is funny to notice that
Maxwell used also the following expressions : electrotonic state, elec-
trokinetic momentum or electromagnetic momentum to designate the
vector potential...
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