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Abstract. Surface waves in classical fluids experience a rich array of black/white hole horizon
effects. The dispersion relation depends on the characteristics of the fluid (in our case, water
and silicon oil) as well as on the fluid depth and the wavelength regime. In some cases, it
can be tuned to obtain a relativistic regime plus high-frequency dispersive effects. We discuss
two types of ongoing analogue white-hole experiments: deep water waves propagating against
a counter-current in a wave channel and shallow waves on a circular hydraulic jump.

1. Introduction
Surface waves in classical fluids provide a natural and rich class of black/white hole analogues.
Two familiar examples are the blocking of sea waves at a river mouth and the approximately
circular jump created by opening the tap in a kitchen sink. We reproduce these two types of
white hole analogues in controlled laboratory settings in order to study the associated horizon
effects and their possible lessons for relativity (and vice versa: lessons from relativity for fluid
mechanics). The river-mouth example corresponds to deep water waves propagating against a
counter-current in a wave channel, while the kitchen-sink example corresponds to shallow waves
on a circular hydraulic jump.

The general dispersion relation for capillary-gravity surface waves propagating against a
counter-current of velocity U is

(ω − Uk)2 =
(

gk +
γ

ρ
k3

)
tanh(kH), (1)

with g the gravitational constant, γ the surface tension, ρ the density, H the fluid depth, and as
usual ω and k are the frequency and wavenumer, respectively. By developing the two extreme
cases kH � 1 and kH � 1 one obtains the deep water and the shallow water limit which are
applicable to the wave channel and the circular jump, respectively.

2. Deep water waves in a wave channel
The deep water case gives (ω − Uk)2 ≈ gk + γ

ρk3. The gravity wave limit is obtained by
neglecting the term in k3, and has a white hole horizon when U =

√
g/k. The deep water case
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with inclusion of capillarity possesses a tremendously rich phenomenology which includes not
only white hole horizons, but also additional horizons such as a negative horizon (a blocking line
for waves with a negative co-moving frequency) and a blue horizon (a blocking line for waves
blue-shifted due to the effect of surface tension). A first series of experiments which led to the
observation of negative-frequency waves was described in [1]. A theoretical development of the
analogy with black/white hole physics as well as rainbow physics in the context of dynamical
systems theory can be found in [2], while [3] contains an in-depth theoretical treatment of the
dispersion relation and the associated horizon effects. Here, we limit ourselves to mentioning
that there exist two possible scenarios in which the white hole horizon can be crossed:

• a double-bouncing scenario in which an incoming wave bounces back at the white hole
horizon, then bounces forward again at the blue horizon, after which it is sufficiently
blueshifted to cross the white hole horizon;

• a direct dispersive penetration in which an incoming wave of sufficiently high frequency
penetrates directly through the white hole horizon, in spite of the presence of a counter-
current which blocks all surface waves in the gravity wave limit.

It should be noted that in the gravity wave limit, the dispersion is “subluminal”, since the
group velocity c =

√
g/k decreases with k. The white hole horizon is then a strict one-way

membrane for pure gravity waves. The inclusion of surface tension is therefore crucial for both
horizon penetration scenarios just mentioned. We refer to [3] for further details, and focus on
the shallow-water case of the circular jump in the remainder of this text.

3. The circular hydraulic jump
When a vertical fluid jet impacts on a horizontal plate with a sufficient flow rate, it will form
a thin layer near the impact zone, which expands radially and at a certain distance forms a
sudden circular hydraulic jump.

3.1. Mach cone experiment
We have focused on the behaviour of surface waves propagating inward against the fluid flow
of the jump itself, and in particular on the question of whether and where they are blocked.
Since the propagation of surface waves on the circular jump can be described in terms of an
effective Painlevé-Gullstrand metric, the location where the surface waves are blocked forms
the hydrodynamical analogue of a white hole horizon. The above question could be answered
by comparing the radial fluid velocity vr

s at the surface and the propagation velocity c of the
surface waves. However, given that there exist no satisfactory simultaneous measurements of
both quantities, we have opted for a simpler alternative, which allows us to directly determine
the ratio between them. Our method is based on the Mach cone well known in the case of sound
waves, see Fig. 1. There, an object propagating at a speed V above the speed of sound cs leaves
behind an observable cone, the Mach cone. This is formed by the envelope of the subsequent
wavefronts emitted by the object, which partially escape from each other. The half-angle θ of
the cone obeys sin θ = ct/|V |t = c/|V | = 1/M , with M the Mach number, see Fig. 1. For an
object propagating at a speed V < cs, the subsequent wavefronts remain inside the previous
ones and no Mach cone is formed.

Exactly the same argument can be applied to the case of an object standing still at the surface
of a fluid flow. By comparing the fluid flow velocity vr

s to the propagation speed of surface waves
c, the following cases can occur:

• Supercritical region: vr
s > c ⇒ θ ∈

[
0, π

2

]
• Subcritical region: vr

s < c ⇒ θ complex; Mach cone disappears
• Horizon: vr

s = c ⇒ θ = π
2



Figure 1. From left to right: Wavefronts emitted in subsonic/subcritical regime. Formation of
Mach cone in supersonic/supercritical regime. Mach cone in circular jump (our experiments).
Mach cone in circular jump, photo taken with high-speed camera. Disappearance of Mach cone
just outside the jump.

Our experiment to demonstrate the presence of a hydrodynamic horizon is described in [4].
Essentially, we have pumped silicon oil through a steel nozzle onto a horizontal PVC plate. A
needle was placed such as to penetrate the flow surface at varying distances from the centre of
the circular jump, where the oil jet impacts on the PVC plate. For each position of the needle,
we haved photographed the setup with a high-speed camera and measured the corresponding
Mach angle θ. The resulting angles and the derived ratio vs

r/c are shown in Fig. 2.
These results provide a clear proof that the circular hydraulic jump constitutes a two-

dimensional hydrodynamic white hole: surface waves travelling at a velocity c from outside
the jump are trapped outside the jump in precisely the same sense as light is trapped inside
a gravitational black hole. The corresponding white-hole horizon is situated precisely at the
radius of the jump itself. The following features of this hydrodynamic white hole are particularly
striking, especially in comparison with other current or planned experiments, e.g. in optics or
Bose-Einstein condensates:

• The white hole here is created “spontaneously”. One only needs to arrange for a sufficient
fluid flow rate, but no extraordinary engineering is required. In fact, it suffices in principle
to open the tap in a kitchen sink to observe such a white hole. All other ingredients in the
experimental setup (the choice of silicon oil, the precision of the pump etc) serve merely to
make the experiment cleaner and free of perturbations and other undesired effects, but do
not affect the essential point which is the creation of the hydrodynamic white hole.

• The white hole can be observed with the naked eye: the location of the white hole horizon
is precisely where the fluid undergoes the characteristic jump.

Finally, let us go back to dispersion relation for surface waves and examine in which dispersive
regime the circular jump typically lies.

3.2. Dispersion relation
Developing Eq. (1) for the case kH � 1 and truncating at O(k4), one obtains

(ω − Uk)2 ≈ gHk2 +
(

γH

ρ
− gH3

3

)
k4 +O(k6)

= c2k2 + c2

(
l2c −

H2

3

)
k4 +O(k6),

where lc =
√

γ/gρ is the capillary length (lc = 1.49mm for the silicon oil in our experiments).
Contrarily to the deep-water case of the wave channel, the shallow-water regime is relativistic



Figure 2. Left: Mach angle θ as a function of the distance r from the centre of the jump
for two values of the external fluid height H (blue circles: H = 0mm, red squares: H = 3mm,
respectively). Right: vs

r/c as a function of r. The dashed vertical line represents the jump radius
Rj . Experimental parameters: see [4].

at low values of k (the associated “relativistic speed” c is c =
√

gH, i.e. the surface wave
velocity in the low-k or gravity limit where capillarity is negligible). Moreover, since the typical
heights of the fluid inside the jump are very small (certainly smaller than

√
3lc, both in our

experiments and in other experiments reported in the literature), one is tempted to conclude
that the circular jump should exhibit superluminal dispersion. Calculations of the the group
velocity cg ≡ ∂ω/∂k from the complete dispersion relation confirm that the circular jump is
superluminal (cg increasing with k) for realistic experimental parameters. In such a superluminal
regime, sufficiently high-frequency modes can penetrate across the horizon in the classically
prohibited sense. The interior of the black/white hole is then no longer causally separated from
the outside. Such superluminal horizon-crossing effects are considered in several scenarios for
quantum gravity phenomenology. They are particularly interesting in the sense that they put
the robustness of several aspects of black hole physics (and in particular, Hawking radiation)
to the test [5]. This implies that it should be possible to test some of these issues associated
to the robustness of semiclassical gravity with respect to transplanckian physics in the circular
hydraulic jump.

We will report in the near future about further experiments to study the interaction between
the circular jump and incoming surface waves.
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