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On the electrodynamics of Minkowski at low velocities
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Abstract – The Galilean constitutive equations for the electrodynamics of moving media are
derived for the first time. They explain all the historic and modern experiments which were
interpreted so far in a relativistic framework assuming the constant light celerity principle. Here,
we show the latter to be sufficient but not necessary.
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One century ago, Hermann Minkowski formulated, for
the first time, a covariant theory of electrodynamics in
moving media [1–4]. He generalized the studies of Henri
Poincaré [5] and Albert Einstein [6] which were restricted
to vacuum. The theory was not only a consequence of
the relativity principle formulated by Poincaré but also
of the constant light celerity principle formulated by
Einstein. Hence, it should have been (and was) applied
to the optics of moving media [7] and to fast particles
in media [8]. Moreover, it was thought to be the only
possible explanation for the entire electrodynamics of
moving media especially for slow motions [9]. The story
almost ended with the last experiment of electrodynamics
in moving media due to the Wilsons [10] which proved the
correctness of the special theory of relativity against the
older theories of Hertz, Lorentz and others whose fields
transformations did not match with the group additivity
as implied by the relativity principle. Nowadays, only
some review papers appear from time to time dealing
with the electrodynamics of moving media especially on
the well-known Minkowski-Abraham controversy about
the correct expression for the energy-momentum tensor
in media [3,4,11].
However, in 1973, Michel Le Bellac and Jean-Marc

Lévy-Leblond postulated the existence of a Galilean limit
of Maxwell equations that is without assuming the finite-
ness of the light velocity. More cumbersome, they showed
that, contrary to Mechanics, Classical Electromagnetism
features TWO Galilean limits: one applies to dielectrics
and the other to magnets [12]. Following our recent works
on Galilean Electromagnetism [13–17], here we solve the
problem of the electrodynamics of moving media at low
velocities. For this purpose, we derive for the first time
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the TWO Galilean limits of the relativistic constitutive
equations introduced by Minkowski as long ago as 1908.
We first recall from the textbooks the relativistic elec-

trodynamics of moving media before taking its Galilean
limits. All the experiments of Classical Electromagnetism
involving motion of part of the setup are described by this
“new” theory as soon as velocities do not reach the celer-
ity of light. It is useless to speak of applications since this
theory encompasses all our wave-less technology. Needless
to add that the Galilean theory is simpler than the rela-
tivistic theory. . .

Relativistic electrodynamics of moving media. –
The relativistic form of Maxwell equation in continuous
media is written as

∇×E =−∂tB, Faraday,
∇·B = 0, Thomson,
∇×H = j+ ∂tD, Ampere,
∇·D= ρ, Gauss,

(1)

This set is the so-called “Maxwell-Minkowski equations”.
A Poincaré-Lorentz transformation (without rotation)

acts on space-time coordinates as follows (see, for instance,
Section 7.2 of [18]):

x′ = x− γvt+(γ− 1)v(v ·x)
v2

,

t′ = γ
(
t− v ·x

c2

)
,

(2)

where v is the relative velocity and γ =
1√

1− (v/c)2 .
Under a Poincaré-Lorentz-Minkoswki transformation,

eq. (2), the electric and magnetic fields and their related
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inductions transform as

E′ = γ
(
E− (γ− 1)

γ

v(v ·E)
v2

+v×B
)
,

B′ = γ
(
B− (γ− 1)

γ

v(v ·B)
v2

− 1
c2
v×E

)
,

D′ = γ
(
D− (γ− 1)

γ

v(v ·D)
v2

+
1

c2
v×H

)
,

H′ = γ
(
H− (γ− 1)

γ

v(v ·H)
v2

−v×D
)
,

(3)

in order to respect the covariance of eq. (1) with respect
to the relativity principle [1,9].
The medium in motion is supposed to be linear, homoge-

neous and isotropic. ε (µ) denotes its permittivity (perme-
ability). Hence, the constitutive equations in the moving
frame (Minkowski’s crucial hypothesis)

D′ = εE′,
B′ = µH′, (4)

become

D− (γ− 1)
γ

v(v ·D)
v2

+
1

c2
v×H=

ε

(
E− (γ− 1)

γ

v(v ·E)
v2

+v×B
)
,

B− (γ− 1)
γ

v(v ·B)
v2

− 1
c2
v×E=

µ

(
H− (γ− 1)

γ

v(v ·H)
v2

−v×D
)
.

(5)

The scalar product with the velocity v of eq. (5) gives

D ·v= εE ·v,
B ·v= µH ·v, (6)

which allows a simplification

D+
1

c2
v×H= ε(E+v×B),

B− 1
c2
v×E= µ(H−v×D).

(7)

The latter relativistic constitutive equations were written
for the first time by Hermann Minkowski in his ground-
breaking paper of 1908 [1].
Now, if we writeD andH as a function of E andB using

eq. (6) and the formula for the double vectorial product

v× (v×D) = v(v ·D)−v2D,
v× (v×E) = v(v ·E)−v2E, (8)

we end up with the relativist expressions for the excita-
tions as a function of the fields in the laboratory frame

D= γ2ε

[(
1− v

2

µεc4

)
E+

(
1− 1

µεc2

)(
v×B− v

c

(v
c
·E
))]
,

H=
γ2

µ

[
(1−µεv2)B+

(
µε− 1

c2

)
(v×E+v(v ·B))

]
. (9)

These are the usual transformations used in the entire
Physics literature.
It is a matter of simple calculations from eqs. (6) and (8)

to get

D= εE+ γ2
(
ε− 1

µc2

)
v×
(
B− v×E

c2

)
,

H=
B

µ
+ γ2

(
ε− 1

µc2

)
v× (E+v×B).

(10)

As we will see shortly, these are the form of the
constitutive equations more amenable to a Galilean limit.

Galilean electrodynamics of moving media. –
Following the procedure adopted in ref. [13–15], a Galilean
limit is obtained in two steps. First, we introduce the
quasi-static approximation v� c to get equations which
do not obey the group additivity property:

D� εE+
(
ε− 1

µc2

)
v×
(
B− v×E

c2

)
,

H� B
µ
+

(
ε− 1

µc2

)
v× (E+v×B).

(11)

At this stage, only the FitzGerald-Lorentz contraction
factor is put to unity. For example, Landau and Lifshitz
used these first-order Lorentz transformations in their
textbook on electrodynamics of continuous media [19].
However, they do not form a group for the addition
property and cannot be considered as correct [16].
Next, an assumption on the relative magnitude of the

remaining terms must be added in order to drop the ones
which break the Galilean covariance. It is easy to see that
the magnetic limit corresponds to the assumption Em ∼
vBm� cBm (see [13–16]). Hence, the Galilean magnetic
constitutive equations write:

Dm � εEm+
(
ε− 1

µc2

)
v×Bm,

Hm � Bm
µ
,

(12)

whereas the electric limit corresponds to cBe ∼ vEe/
c�Ee (see [13–16]) with the following Galilean electric
constitutive equations:

De � εEe,

He � Be
µ
+

(
ε− 1

µc2

)
v×Ee
c2

.
(13)

A similar simplification could have be done with
eqs. (9) instead of eqs. (10) used here. Both sets (12) and
(13) do form a group. Moreover, they can be obtained
directly from Minkowski constitutive equations (7) since
the magnetic limit transformations follow from

Dm+
1

c2
v×Hm � ε(Em+v×Bm),

Bm � µHm,
(14)
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in accordance with the Galilean magnetic Maxwell-
Minkowski equations

∇×Em = −∂tBm, Faraday,
∇ ·Bm = 0, Thomson,
∇×Hm = jm, Ampere,
∇ ·Dm = ρm, Gauss,

(15)

whereas the electric limit transformations come from

De � εEe,
Be− 1

c2
v×Ee � µ(He−v×De),

(16)

in accordance with the Galilean electric Maxwell-
Minkowski equations

∇×Ee = 0, Faraday,
∇ ·Be = 0, Thomson,
∇×He = je+ ∂tDe, Ampere,
∇ ·De = ρe, Gauss,

(17)

Le Bellac and Lévy-Leblond underlined in their seminal
paper that combinations of the electric and magnetic
limits are of course possible [12]. Hence, the following
Galilean displacement field is allowed:

DG =Dm+De � ε(Ee+Em)+
(
ε− 1

µc2

)
v×Bm.

(18)
The measurements by the Wilsons and their modern

reproduction by Hertzberg et al. displayed unambiguously
the factor (ε− 1/µc2) and a linear relationship with the
velocity of the displacement field [10]. However, what
this experiment validates is first of all the Galilean
Electrodynamics à la Minkowski that we derived for the
first time in this work. The special relativity prediction
was not so far tested contrary to what was believed and
is unlikely to be because of the rapid velocities it implies.
Hence, Minkowski’s electrodynamics is useless when one
deals with low velocities. However, only the Maxwell-
Minkowski equations are able to predict correctly the optics
of moving media like the Čerenkov radiation [8] or the
Fresnel-Fizeau drag [7] . . .
We believe to have solved the long-standing problem of

the electrodynamics of moving media. For this purpose,
we derived for the first time the Galilean constitutive
equations for moving bodies with both dielectric and
magnetic properties. Contrary to Mechanics which
features only one Galilean limit due to causality, Classical
Electromagnetism displays two distinct low-velocities
approximations which were mixed incoherently before
and generalized after special relativity was created one
century ago by the joined efforts of Lorentz, Poincaré,
Einstein and Minkowski.
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