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Lorenz or Coulomb in Galilean electromagnetism?
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PACS. 03.50.De – Classical electromagnetism, Maxwell equations.

PACS. 41.20.-q – Applied classical electromagnetism.

PACS. 47.65.+a – Magnetohydrodynamics and electrohydrodynamics.

Abstract. – Galilean electromagnetism was discovered thirty years ago by Lévy-Leblond and
Le Bellac. However, these authors only explored the consequences for the fields and not for the
potentials. Following De Montigny et al., we show that the Coulomb gauge condition is the
magnetic limit of the Lorenz gauge condition whereas the Lorenz gauge condition applies in the
electric limit of Lévy-Leblond and Le Bellac. Contrary to De Montigny et al., who used Galilean
tensor calculus, we use orders of magnitude based on physical motivations in our derivation.

Introduction. – Does there exist a Galilean limit of Maxwell equations? According
to Lévy-Leblond and Le Bellac, the answer is positive [1]. Indeed, following the work of
Lévy-Leblond on Galilean invariance within Classical and Quantum Mechanics [2], they have
shown that there exist not one as in mechanics but two well-defined Galilean limits of the
full set of Maxwell equations: the magnetic limit and the electric limit. The two Galilean
limits were introduced by Lévy-Leblond and Le Bellac without demonstration (see later for
a justification). More precisely, they have shown that two particular approximations of the
full set of Maxwell equations were in agreement with the two Galilean transformations for the
field they “derived”.
If one denotes γ = (1−v2/c2

L)
−1/2, where cL is the light velocity, the relativistic transfor-

mations for the fields in vacuum between two inertial frames with relative velocity v are

E′ = γ(E+v×B)+
(1− γ)(v · E)v

v2
and B′ = γ

(
B−(

1/c2
L

)
v×E

)
+
(1− γ)(v · B)v

v2
. (1)

In vacuum, one obtains the magnetic limit by stating that |v|/cL � 1 and E � cLB in (1).
Conversely, the electric limit is obtained by stating that |v|/cL � 1 and E � cLB. Hence,
one ends up with two sets of low-velocity formulae from the Lorentz transformations [1]:

Electric limit: Magnetic limit:
E′ = E and B′ = B − (1/c2

L)v × E E′ = E + v × B and B′ = B
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These two limits are practically very important since they correspond to the so-called
electro-quasi-static and magneto-quasi-static approximations of engineering electromagnetism
as described in [3]. Moreover, magnetohydrodynamics relies on the magnetic limit whereas
electrohydrodynamics relies on the electric limit of Maxwell equations [4–6].
Several authors have discussed recently Lévy-Leblond and Le Bellac paper. Holland and

Brown argued that the limit process applied to the scalar and vector potential would break
gauge invariance in such a way that they did not explore as Lévy-Leblond and Le Bellac the
consequences for the so-called gauge conditions [7]. De Montigny et al. in a series of papers
revisited also Galilean electromagnetism with the help of a “Galilean tensor calculus” which
consists in expressing non-relativistic equations in a covariant form with a five-dimensional
Riemannian manifold, the so-called Bargmann space-time approach (see [8, 9] and references
therein). In their review on Galilean electromagnetism, De Montigny et al. have shown that
the Lorenz gauge condition ∇ ·A+ 1

c2
L

∂V
∂t = 0, which is covariant with respect to the Lorentz

transformations, becomes the Coulomb gauge condition ∇ · A = 0 within the magnetic limit
and that the Lorenz gauge condition keeps unchanged within the electric limit [8]. The present
author has reached independently the same conclusions [10] by imposing directly Galilean
covariance with respect to the gauge conditions depending on the Galilean transformations
for the potentials, first introduced by Lévy-Leblond and Le Bellac, which differ according to
the two limits [1]:

Electric limit: Magnetic limit:

V ′ = V and A′ = A − vV

c2
L

V ′ = V − v · A and A′ = A

by recalling that the Galilean transformations for the spatial and temporal derivations are

∇ = ∇′, (2)
∂t + v · ∇ = ∂t′ . (3)

Here, we would like to show a physically meaningful derivation based on orders of magni-
tude of the Galilean limits for the Lorentz-covariant Lorenz gauge condition.

The Galilean limits of Lorenz gauge condition. – Now, how do Lévy-Leblond and Le
Bellac know that E � cLB or E � cLB? Indeed, it is a rather formal assumption which is
not justified at all a priori whereas it is true!
We argue that the derivation of Lévy-Leblond and Le Bellac is equivalent to evaluate the

order of magnitude of the following parameters:

ε =
L

cLτ
and ξ =

j̃

ρ̃cL
, (4)

where L(τ) represents the order of magnitude of a typical scale (time) of the problem and
j̃ (ρ̃) represents the order of magnitude of the current (charges) density in the system un-
der examination.
As a matter of fact, the values of the electric and magnetic fields depend on their sources,

that is, on the distribution of the charge and current densities. If one evaluates the order of
magnitude of the fields in function of the sources using Gauss and Ampère’s equations and (4),
one ends up with

B̃

L
≈ µ0j̃ and

Ẽ

L
≈ ρ̃

ε0
, (5)
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which leads to
cLB̃

Ẽ
≈ j̃

ρ̃cL
= ξ. (6)

Hence, one has shown that assuming E � cLB (E � cLB) is the consequence of assuming
ξ � 1 (ξ � 1).
In addition, Ampère’s equation leads to

B̃ ≈ ṽẼ

c2
L

, (7)

where ṽ ≈ L/τ is the order of magnitude of a typical velocity of the system under consideration.
Faraday’s equation gives

Ẽ ≈ ṽB̃, (8)

which are compatible only if ṽ ≈ cL (Lorentz-covariant electromagnetism).
As a consequence, either we have B̃ ≈ ṽẼ/c2

L which is compatible with ∇ × E ≈ 0 (the
time derivative of the magnetic field drops) and ∇× B = µ0j + 1/c2

L∂tE (the electric limit)
or we have Ẽ ≈ ṽB̃ which is compatible with ∇×B ≈ µ0j (the time derivative of the electric
field drops) and ∂tB = −∇× E (the magnetic limit) [1].
Once again, we underline forcefully that we have only shown compatibility between some

approximations of the full set of “Maxwell equations” with Galilean relativity as in [1]. We
will now present what we think to be a demonstration of the two Galilean limits [1, 8, 10].
Indeed, the author has recently proposed to use the so-called Riemann-Lorenz formulation

(the potentials are the basic quantities) instead of the so-called Heaviside-Hertz formulation
(the fields are the basic quantities) in order to describe any experimental fact relative to Clas-
sical Electromagnetism [10]. The Riemann-Lorenz procedure consists in using the following
postulate: “Any experimental fact of Classical Electromagnetism can be explained through
the use of a scalar and a vector potential which are solutions of a set of Riemann equations
with source terms (current density for the vector potential and charge density for the scalar
potential) (9) assuming that both potentials are constrained to fulfill the Lorenz equation (10).
With respect to the interaction with the matter, the Lorentz force usually written in terms of
the fields can be rewritten in terms of the potentials (11)”:

∇2V − 1
c2
L

∂2V

∂t2
= − ρ

ε0
and ∇2A − 1

c2
L

∂2A

∂t2
= −µ0j: Riemann equations, (9)

∇ · A+ 1
c2
L

∂V

∂t
= 0: Lorenz equation, (10)

d
dt
(mv + qA) = −∇(V − v · A): Lorentz force. (11)

The purpose of this article is not to discuss the validity of this postulate but to show what
it implies with respect to Galilean electromagnetism using the potentials.
Assuming that the sources vanish at infinity, the potentials are expressed by the so-called

retarded formulae:

V (M, t)=
1
4πε0

∫ ∫ ∫
ρ(P, t−PM/cL)

PM
dτ and A(M, t)=

µ0

4π

∫ ∫ ∫
j(P, t−PM/cL)

PM
dτ.

(12)
We explicitly assume that the potentials are defined up to a constant which, for an infinite
volume, is taken to be zero. If the volume of investigation is bounded like in a Faraday cage,
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the contribution of all the sources outside the volume resumes to a constant which is different
from zero as can be shown easily with the Green formula.
In the quasi-static approximation, where ε � 1, the so-called retarded formulae (12) for

the potentials become

V (M, t) ≈ 1
4πε0

∫ ∫ ∫
ρ(P, t)
PM

dτ and A(M, t) ≈ µ0

4π

∫ ∫ ∫
j(P, t)
PM

dτ. (13)

These approximations are the solutions of Poisson equations for the potentials (14) which are
the quasi-static limits of the Riemann equations with source terms [6]:

∇2V ≈ − ρ

ε0
and ∇2A ≈ −µ0j . (14)

From this last remark, we can evaluate the order of magnitude of the potentials in function of
the sources j̃ and ρ̃ which are given a priori (ϑ is the order of magnitude of the source volume):

Ṽ ≈ 1
4πε0

ρ̃ϑ

L
and Ã ≈ µ0

4π
j̃ϑ

L
. (15)

Contrary to Holland and Brown [3], we explicitly break gauge invariance of the Heaviside-
Hertz formulation by giving orders of magnitude to the potentials. By saying that we can
evaluate the order of magnitude of the potentials, we assume that we evaluate the order of
magnitude of the potentials with respect to the constant on the boundary of the domain
which is null if infinite and without sources at infinity. Hence, the tilde means the order of
magnitude of a difference of potentials. Indeed, only the concept of difference of potential does
have a physical meaning in the Riemann-Lorenz formulation. Yet, we point out forcefully
that a difference of potential is not equal to a field: for example, the static field inside a
capacitor is equal to the difference of potential between the two plates divided by the distance
between them.
Now, one can form the following non-dimensional ratio using (15):

cLÃ

Ṽ
≈ cLµ0j̃

ρ̃
ε0

=
j̃

ρ̃cL
= ξ. (16)

We would like to know what the Lorenz gauge condition as well as the charge conservation
∇·j+ ∂ρ

∂t = 0 become within the Galilean limits. We evaluate the orders of magnitude (double
vertical lines) of each component of the spatial terms in these equations with respect to the
temporal term:

‖∇ · A‖
‖ 1

c2
L

∂V
∂t ‖

≈
Ã
L

Ṽ
c2

L
τ

≈ cLτ

L

cLÃ

Ṽ
=

ξ

ε
and

‖∇ · j‖
‖∂ρ

∂t ‖
≈

j̃
L
ρ̃
τ

≈ cLτ

L

j̃

cLρ̃
=

ξ

ε
. (17)

As one can see, the same ratio between ε and ξ is implied. Now, according to Lévy-Leblond
and Le Bellac, the quadri-current has the following Galilean limits [1]:

Electric limit: Magnetic limit:

ρ′ = ρ and j′ = j − ρv ρ′ = ρ − v·j
c2

L

and j′ = j

which leads to ξe = j̃
ρ̃cL

≈ ρ̃ṽ
ρ̃cL

≈ ε which leads to ξm = j̃
ρ̃cL

≈ j̃
ṽj̃

c2
L

cL

≈ 1
ε
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Hence, ξ is different whether one considers the electric or the magnetic limit.
For Lorentz covariant electromagnetism, we have obviously ε ≈ O(1) and ξ ≈ O(1), which

implies that the two terms in the Lorenz gauge are of the same order of magnitude: Lorenz
gauge condition is Lorentz covariant which is well known.
In the quasi-static approximation, where ε � 1, we get

Electric limit:
ξe ≈ ε � 1 and ξe

ε ≈ O(1). (18)

According to (18), the Lorenz gauge ∇·A+ 1
c2

L

∂V
∂t = 0 is now Galilean covariant with respect

to the electric transformations of the potentials,

Magnetic limit:
ξm ≈ 1

ε � 1 and ξm

ε � 1. (19)

Hence, using (19), the Coulomb gauge ∇ · A = 0 is the approximation of the Lorenz gauge
within the magnetic limit and is now Galilean covariant with respect to the magnetic trans-
formations of the potentials [8, 10]. The same conclusion applies for the charge conservation:
∇· j = 0 is the Galilean magnetic limit of ∂tρ+∇· j = 0 which is both Lorentz-covariant and
covariant with respect to the Galilean electric limit [1,8]. In addition, we point out forcefully
that ∇ · j = 0 does not mean that the current density is static. Indeed, a time-dependent
generator related to a lamp is such that the current density is divergenceless but varies in
time: it is just the local expression of the global Kirchhof’s law for time-dependent current
intensities. This remark is well known in magnetohydrodynamics [4].
Using the Poisson equations for the potentials and either the Lorenz or the Coulomb

gauge depending on the electric or the magnetic limit, one can easily derive the two sets of
Galilean Maxwell equations for the fields proposed by Lévy-Leblond and Le Bellac [1]. The
important point is to recognize that the two Galilean sets of equations in terms of the fields
were stated without demonstration in [1] whereas here, we can demonstrate them starting
with the potentials. We emphasized that Lévy-Leblond and Le Bellac procedure is completely
valid, despite the fact that it relied on an assumption with respect to the relative importance of
the electric field and the magnetic field, which remained to be justified as we have done in this
paper using the potentials. In addition, we think we have resolved a long-standing problem in
Classical Electromagnetism, that is we have provided physical motivations in order to choose
either the Lorenz equation or the Coulomb equation depending on the Galilean or relativistic
features (encoded in the scaling parameters) of the problem we are dealing with.

Conclusion. – As a conclusion, we have shown that the Lorenz equation applies in
both Lorentz-covariant relativity and Galilean-covariant electric limit of Lévy-Leblond and
Le Bellac whereas the Coulomb equation applies only within the Galilean-covariant magnetic
limit [8, 10]. We have explicitly broken gauge invariance in order to get these results in
accordance with the Riemann-Lorenz formulation of Classical Electromagnetism [10]. This
last fact is a priori astonishing and contradictory, but it was demonstrated long ago that
Galilean covariance and gauge invariance were incompatible [11]. Galilean electromagnetism is
an unexpected field of actual research as we need to explore all its consequences in our current
understanding of the special theory of relativity. As recalled recently by Norton, this theory
emerged from Albert Einstein’s struggle with the Maxwell-Lorentz’s pre-1905 electromagnetic
theory, which is a mixing of the magnetic and the electric limits without the essential property
of group additivity and which made it untenable [12].
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