
DOI 10.1140/epjp/i2013-13081-5

Review

Eur. Phys. J. Plus (2013) 128: 81 THE EUROPEAN
PHYSICAL JOURNAL PLUS

Forty years of Galilean Electromagnetism (1973–2013)

Germain Rousseauxa
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Abstract. We review Galilean Electromagnetism since the 1973 seminal paper of Jean-Marc Lévy-Leblond
and Michel Le Bellac and we explain for the first time all the historical experiments of Rowland, Vasilescu
Karpen, Roentgen, Eichenwald, Wilson, Wilson and Wilson, which were previously interpreted in a Special
Relativistic framework by showing the uselessness of the latter for setups involving slow motions of a part
of the apparatus. Galilean Electromagnetism is not an alternative to Special Relavity but is precisely its
low-velocity limit in Classical Electromagnetism.

Introduction

Niederle and Nikitin stated recently that [1] “analyzing contents of the main impact journals in theoretical and
mathematical physics one finds that an interest of research in Galilean aspects of electrodynamics belongs to an
evergreen subject”. Despite the long history of the electrodynamics of moving media as exemplified by the world-
famous paper by Albert Einstein entitled On the electrodynamics of moving bodies [2,3], several questions remain to be
answered [4–25]. The Abraham-Minkowski controversy about the correct expression of the energy-momentum tensor in
matter is a well-known example [26–29]. The interplay between moving fluids (normal, ferrofluids, liquid crystals. . . )
and applied fields still generates interest (see, for instance, refs. [30–32]). In addition, the validity of the Lorentz
transformations, when applied to rotation and non-uniform motion, is at the center of a vivid debate [33–42,32,43,44].
The goal of this work is to revisit some historical experiments which supported Special Relativity, from certainly
a relativistic point of view but a Galilean one; we use “Galilean Electromagnetism”, first considered in 1973 by Le
Bellac and Lévy-Leblond (LBLL) [45] and re-examined in [8,46–59]. In this review paper, we underline first the
recent achievements of Galilean Electromagnetism with a historical perspective. After, we recollect the relativistic
description of Minkowski’s electrodynamics without using tensor analysis. Then, we give a technical summary of
some recent results on the Galilean electrodynamics of moving media. Afterwards, the Galilean constitutive equations
are presented and, when necessary, they are used to explain the Rowland, Vasilescu Karpen, Roentgen, Eichenwald,
Wilson, Wilson and Wilson’s experiments without any recourse to Special Relativity. Our purpose is to show that
coherently defined Galilean theories can describe experiments, otherwise understood as being “relativistic effects”.
Let us underline strongly that Galilean Electromagnetism is not an alternative to Special Relavity that remains
unchanged but Galilean Electromagnetism is precisely the low-velocity limit of Special Relativity when applied to
Classical Electromagnetism.

1 The revision of Classical Electromagnetism via its Galilean limits

According to Jean-Marc Lévy-Leblond, “the ideas, no more than the beings, are not born grown-up. It is rather in the
confusion than they appear at first, embarrassed by the notions which they are going to invalidate, and formulated
in inappropriate and soon void terms. That is why the “scientific revolutions” are not enough for the march of our
knowledges; it is necessary that succeed them time of “revision” (Bachelard), who allow the purge, the (temporary)
stabilization and the reformulation of the new theories”.

It seems today that Classical Electromagnetism is in a phase of revision. Classical Electromagnetism is a theoretical
corpus of experimental facts and interpretations stemming from the unification of the sciences of electricity and
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magnetism via the principle of relativity. It is to the Scot James Clerk Maxwell that we owe in 1861 the writing of a
set of equations describing electromagnetic phenomena [60]. Henri Poincaré, reader of Clerk Maxwell, formulated in
1904 the principle of relativity [61]: the equations of physics, the mathematical translation of experimental facts, keep
the same form whatever are the observers in uniform relative movements with regard to others. We speak about a
principle of covariance to qualify its “democratic” character. Albert Einstein, reader of Poincaré, formulated in 1905
the following principle of invariance [2,3]: light, the mediator of information, has a constant velocity, independent of
the source velocity. Thus, the light has a particular, “anti-democratic” status. Hermann Minkowski, reader of Poincaré
and Einstein, suggested in 1908 to unify space and time in a continuum space-time [62]. Poincaré and Minkowski
introduced the notion of the four-vector, a mathematical object varying as a space-time transformation (said “of
Lorentz”) in a change of inertial frame of reference, formed by a “spatial” vector part (for example, the position, the
density of current, the vector potential) and of a scalar “temporal” part (for example, the time, the density of charge,
the scalar potential). Four-vectors display, under a manifestly covariant form, the equations of physics. Electricity and
magnetism are no more than appearances in a certain frame of reference of observation of the unifying entity called the
electromagnetic field. Although the modern groups theory and the notion of causality allow to express mathematically
the laws of transformations for space-time from one inertial frame of reference to another one, by using only the
principle of covariance and by creating a constant of structure (mediator of the information, having the dimension
of a speed), it seems that the principle of invariance clarifies indirectly how is made the taking of the Galilean limit
because the light loses then its privileged status (its speed would differ between two frames of reference which is in
contradiction, naturally, with the experimental facts).

Jean-Marc Lévy-Leblond showed in 1965 that the Lorentz transformations degenerate towards the transformations
of Galilee provided one makes two hypotheses [63]: the relative speed between two inertial frames of reference is very
small with regard to the speed of light (this last one remaining finite, to make it tend towards infinity has no sense
because it would be counter-factual); a Galilean phenomenon takes place in an arena, the spatial extension of which is
very small with regard to the distance covered by light during the duration of the phenomenon. If the second condition
is relaxed, we can show that an a-causal limit (the so-called Carroll kinematics) at low speeds is completely possible
mathematically but Lévy-Leblond excluded it by the physical requirement of causality [63]. The important point of
the taking of a Galilean limit is that the spatial part of the four-vector “position” in four dimensions is smaller than
its temporal part. Einstein’s mechanics, which describes the motion of massive particles, admits one single Galilean
limit, that is Newton’s mechanics. What about Classical Electromagnetism?

The modern presentation of Special Relativity often consists in the following fable: “At the end of the 19th and
at the beginning of 20th centuries, some famous physicists noticed the incompatibility between, on the one hand,
the mechanics of Newton and, on the other hand, the electromagnetism of Maxwell. In particular, the equations of
Maxwell (where c represents an invariant, the speed of light) are not covariant according to the transformations of
Galileo of space and time. A new mechanics was so created by generalizing that of Newton to be compatible with both
principles of covariance (known since Galileo for the mechanics and generalized by Poincaré for the whole physics)
and of invariance (dictated by the equations of Maxwell and, for example, the experiment of interferences optics of
moving bodies due to Michelson and Morley).”

The success of Special Relativity followed by General Relativity was unprecedented and we can qualify a posteriori
this theory of a scientific revolution. However, a dogma appeared: “Classical Electromagnetism is incompatible with
Galilean physics”. It was necessary to wait until 1973, when Jean-Marc Lévy-Leblond, supported by Michel Le Bellac,
asked the following relatively naive but brave question [45]: if Einsteinian mechanics has a Galilean limit, why does
not Electromagnetism? We saw that taking the limit features two stages: limitation to a regime of low speeds and
comparison of the spatial and temporal parts of the envisaged four-vector. In Classical Electromagnetism, there is no
reason for postulating that the spatial part is always smaller than the temporal part. It is true for the four-vector
position but groundless generally. For example, the spatial part of the four-current, i.e. the density of electric current
can be much bigger than its temporal part, i.e. the density of electric charge: it is what takes place, for example, in an
ohmic conductor gone through by a current where the charge density is null. So, Classical Electromagnetism admits
two low-velocity limits! A revision is thus necessary.

In 1973, Lévy-Leblond and Le Bellac postulated two sets of approximate Maxwell equations compatible with the
Galilean transformations of both sources and fields and deducted from their taking of limit [45]. They distinguished
the “magnetic” said Galilean limit, which applies to magnets where the so-called displacement current is neglected in
Maxwell’s equations, and the “electric” said limit, which applies to insulators where the term of Faraday induction
disappears. In 2003, Marc de Montigny [50] and the present author [51] demonstrated independently both sets of
approximate Maxwell’s equations postulated by Lévy-Leblond and Bellac. Marc de Montigny used groups theory with
a tensorial Lagrangian formulation in five dimensions (the fifth constituent being the action) followed by a process said
of “reduction” [50]. The present author used a reasoning with orders of magnitude to write the Galilean limits of the
Lorentz transformations of the electromagnetic potentials and of the so-called “gauge conditions” [51]. In particular,
the Canadian and French researchers showed that the Lorenz “gauge condition” is at once compatible with the Lorentz
transformations and the electric Galilean transformations while the Coulomb “gauge condition” applies only in the
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case of the magnetic limit [50–54]. So, the mystery of the ranges of validity of the “gauge conditions” was solved
by the recognition of their relativist or Galilean character depending on the context. The present author had been
led towards this result by noticing the analogy between the “gauge conditions” and the mass continuity equation
for a fluid in motion. The analogy between Fluid Mechanics and Classical Electromagnetism is the one introduced
by James Clerk Maxwell to derive his famous set of equations [60]. The Coulomb “gauge condition” (similar to the
constraint of incompressibility) is the low-speed limit of the Lorenz “gauge condition” (similar to the constraint of
compressibility for the acoustic waves) [51]. In 2013, Giovanni Manfredi derived the same conclusions with respect
to the range of validity of the gauge condition by providing a systematic derivation of these two limits based on a
dimensionless form of Maxwell’s equations and an expansion of the electric and magnetic fields in a power series of
some small parameters [58]. He extended a procedure introduced by Melcher but that was applied to fields only [64,24]
(see also [59] for applications to condensers and solenoids).

The reader may have been worried by the fact that the expression “gauge condition” is written with quotation
marks. Indeed, they are not mathematical equations taken without physical motivation but they are true physical
constraints, namely continuity equations with mechanical analogues [51,65]. It has been explained elsewhere why the
four-potential is a physical quantity contrary to the old-established belief which dismisses a physical interpretation
to the potentials of Classical Electromagnetism [51,54,65]. It has been also explained why the “gauge conditions”
are physical constraints contrary to the same old-established belief [51,65]. The vector potential was measured very
recently in a classical context with a quantum probe [66]. Its necessity to explain a classical experiment was shown [65]
(see another example in [67]). Nobel prize winners have discussed recently the reality of the vector potential [68–70].

2 Minkowski electrodynamics, Poincaré covariance and constitutive equations

After Poincaré and Einstein have proved, in 1905, the covariance of the full set of Maxwell’s equations, including
the case of sources in vacuum [2,3], the extension to continuous media, including polarization and magnetization
effects, was masterly tackled by Hermann Minkowski in 1908 [62]. As a leading mathematician of his time, Minkowski
formulated special relativity with the tools of tensorial analysis. Indeed, he followed the path outlined by Poincaré
(who introduced the four-vectors) by introducing what he called “vectors of the first species” (i.e. four-vectors, like
the charge and current densities), as well as “vectors of the second species” (i.e. hexa-vectors like the one formed by
the electric and induction fields). His terminology is no longer used today but the transformations properties of the
associated tensors have become commonplace. Minkowski was the first to realize that the constitutive equations were
not covariant under a Lorentz transformation [62]; one supposes their validity in the moving frame and then expresses
them in the laboratory frame. We will outline this process by adopting the latter presentation of Einstein and Laub
introduced in 1908 [71–75], without recourse to tensors, as discussed by Pauli in his review article of 1921, cited in [12].

The relativistic form of Maxwell’s equations (also referred to as “Maxwell-Minkowski equations”) in continuous
media is written as

∇ × E = −∂tB, Faraday,

∇ · B = 0, Thomson,

∇ × H = j + ∂tD, Ampère,

∇ · D = ρ, Gauss.

(1)

A Lorentz transformation acts on space-time coordinates as follows (see, for instance, sect. 7.2 of [76]):

x′ = x − γvt + (γ − 1)
v(v · x)

v2
,

t′ = γ
(

t −
v · x
c2

)

, (2)

where v is the relative velocity and γ = 1√
1−(v/c)2

. Under this transformation, the electric field E and magnetic field

H, and their respective inductions, D and B, transform as follows:

E′ = γ

(

E −
(γ − 1)

γ

v(v · E)

v2
+ v × B

)

,

B′ = γ

(

B −
(γ − 1)

γ

v(v · B)

v2
−

1

c2
v × E

)

,

D′ = γ

(

D −
(γ − 1)

γ

v(v · D)

v2
+

1

c2
v × H

)

,

H′ = γ

(

H −
(γ − 1)

γ

v(v · H)

v2
− v × D

)

. (3)
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We consider a medium in motion that is linear, homogeneous and isotropic. We denote its permittivity by ε and
its permeability by µ. Hence, the constitutive equations in the moving frame (Minkowski’s crucial hypothesis [62]),

D′ = εE′,

B′ = µH′, (4)

become

D −
(γ − 1)

γ

v(v · D)

v2
+

1

c2
v × H = ε

(

E −
(γ − 1)

γ

v(v · E)

v2
+ v × B

)

,

B −
(γ − 1)

γ

v(v · B)

v2
−

1

c2
v × E = µ

(

H −
(γ − 1)

γ

v(v · H)

v2
− v × D

)

. (5)

The scalar product with the velocity v of eq. (5) gives

D · v = εE · v,

B · v = µH · v, (6)

which allows us to simplify eq. (5) to the following expression:

D +
1

c2
v × H = ε(E + v × B),

B −
1

c2
v × E = µ(H − v × D). (7)

The latter relativistic constitutive equations were first written in 1908 by Minkowski in his groundbreaking paper [62].
If we write D and H in terms of E and B by using eq. (6), and utilize the formula for the double vectorial product,

v × (v × D) = v(v · D) − v2D,

v × (v × E) = v(v · E) − v2E, (8)

we obtain the following relativistic expressions in the laboratory rest frame:

D = γ2ε

[(

1 −
v2

µεc4

)

E +

(

1 −
1

µεc2

)

(

v × B −
v

c

(v

c
· E

))

]

,

H =
γ2

µ

[

(1 − µεv2)B +

(

µε −
1

c2

)

(v × E + v(v · B))

]

. (9)

Other useful formulae, derived from eqs. (7), are

B =
1

1 − µεv2

[

µ

(

1 −
v2

c2

)

H −
(

µε −
1

c2

)

v × E + µ

(

µε −
1

c2

)

(v · H)v

]

,

D =
1

1 − µεv2

[

ε

(

1 −
v2

c2

)

E +

(

µε −
1

c2

)

v × H − ε

(

µε −
1

c2

)

(v · E)v

]

. (10)

Finally, eqs. (6), (7) and (8) lead to

D = εE + γ2

(

ε −
1

µc2

)

v ×
(

B −
v × E

c2

)

,

H =
B

µ
+ γ2

(

ε −
1

µc2

)

v × (E + v × B). (11)

These are the forms of the constitutive equations more amenable with a Galilean limit. One recovers the usual
constitutive relations either for vacuum with motion (µ = µ0, ε = ε0 and v $= 0) or for media at rest (µ $= µ0, ε $= ε0
and v = 0).
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3 Electrodynamics of continuous media at low velocities

According to Le Bellac and Lévy-Leblond [45,49,51–55], any four-vector (u0,u) has two Galilean low-velocity limits
depending on the relative magnitude between its spatial and temporal parts. For example, let v denotes a typical
velocity of the system under study (it can be a true velocity: say the one of a moving magnet with respect to the
laboratory frame or a fictive one like the product of the radius of a solenoid and the working frequency of the varying
current flowing in it). A Galilean limit is such that v % c where c is the light velocity [45,77–82]. A time-like (space-like)
Galilean limit implies, in addition, that u0 & u (u0 % u). From the Lorentz transformation of the four-vector, we can
derive two limits which are the time-like Galilean transformations [u′

0 = u0,u′ = u− u0

c v] and the space-like Galilean
transformations [u′

0 = u0 − 1
cv ·u,u′ = u]. For any four-vector, one deduces two low-velocity approximations from the

“relativistic” transformation where the Lorentz contraction factor has disappeared but where we kept the constraint
of group additivity which encodes the (Special) Principle of Relativity. As recalled by Heras, the status of c changes
when one takes a Galilean limit [56,57]. Indeed, since Maxwell [60], c is usually both a unit “translator” cu (obtained
from comparing the unit of force for the quasi-static laws of Coulomb and Biot and Savart) and the velocity of light
cL. When, in a Galilean transformation, one writes c, it means cu and not cL since cL is irrelevant in the low-velocity
approximation v % cL [45,77–82]. For simplicity, we will keep c instead of cu in the Galilean transformations.

Here, let us underline the difference between covariance and invariance [83]: cL is a Lorentz invariant; u0 is a Galilean
invariant in the time-like limit but not in the space-like limit. The equations of “motion” (be it Maxwell’s equations
or the equations for the potentials) must keep the same form when changing from one inertial frame to another: they
are covariant with respect to the space-time transformations (be it Lorentz or Galilean transformations). Covariance
is the mathematical expression of the Physical (Special) Principe of Relativity.

Now, we have to find four-vectors in order to apply the Galilean reduction (the couple (E, cB) is not):

– Is the couple (ρc,J) a four-vector? According to Poincaré [61], yes if and only if the couple is constrained by the
charge conservation ∇ ·J+∂tρ = 0. Indeed, the charge continuity equation is a four-scalar product ∂µJµ = 0, that
is, it is an invariant provided the couple (ρc,J) does constitute a four-vector.

– Is the couple (V, cA) a four-vector? According to Poincaré [61], yes if and only if the couple is constrained by the
Lorenz “gauge condition” ∇ · (cA) + ∂t(V/c) = 0. Indeed, the Lorenz continuity equation is a four-scalar product
∂µAµ = 0, that is, it is an invariant provided the couple (V, cA) does constitute a four-vector. The Coulomb “gauge
condition” ∇ · A = 0 is not Lorentz-covariant.

What are the Galilean limits of the Lorentz transformations of the four-potential? The time-like limit (V & cA)
transformations are V ′ = V and A′ = A − V/c2v whereas the space-like limit (V % cA) transformations are
V ′ = V − v · A and A′ = A with v the relative velocity. The former transformations are known as the electric limit
whereas the latter constitute the magnetic limit. Hence, from these limits one easily deduces (we use ∂′

t = ∂t − v · ∇
and ∇′ = ∇) [51–54] what follows.

– The Lorenz “gauge condition” is covariant with respect to the Galilean electric limit whereas it is not for the
magnetic limit.

– The Coulomb “gauge condition” is covariant with respect to the Galilean magnetic limit whereas it is not for the
electric limit.

– The Coulomb “gauge condition” is the Galilean magnetic limit of the Lorentz-covariant Lorenz “gauge condition”.
These two “gauge conditions” are not independent. One is the quasi-stationnary (and obviously the stationary)
limit of the other.

– The Lorenz “gauge condition” has a double status since it is both compatible with the Lorentz transformations
and the Galilean electric transformations

Let us recall that the same conclusions were obtained independently by de Montigny et al. in a very different way
using group theory [50] and by Manfredi using power series expansion [58]. To have several demonstrations of the same
result is an indication of its robustness. . .

One does not need to assume simultaneously E & cB and ρc & J in order to derive, for example, the electric
limit. E & cB is a consequence of ρc & J . Similarly, V & cA is a consequence of ρc & J . As a matter of fact, both
potentials are solutions of a Poisson equation in the Galilean limits: hence, the ratio J/(ρc) has the same limits as the
ratio (cA)/V [54]. The electric limit transformations for the potentials V ′ = V and A′ = A− V/c2v are incompatible
with the Coulomb “gauge condition” since the latter is not covariant with respect to these transformations. When
one wants to use an equation in a specific context, one has to check if this equation is compatible with the underlying
space-time symmetry. Moreover, the electric limit implies cA % V in addition to the low-velocity approximation
v % c: these two constraints lead necessarily to the fact that both terms in the Lorenz “gauge condition” are of the
same order of magnitude [54]. Hence, one cannot drop the temporal term with respect to the divergence term in the
Lorenz “gauge condition” to get the Coulomb “gauge condition” within the electric limit (which would be the case in
the magnetic limit because cA & V ). It is obvious that within the magnetic limit, some solutions are such that the
scalar potential vanishes. One can think of a solenoid in the laboratory frame, the scalar potential is zero since there
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is no charge density in the laboratory frame. This will not remain true in a moving frame. To impose that the scalar
potential vanishes is a consequence of the cancellation of the charge density. Physical reasoning never forces the scalar
potential to be zero without having introduced a hypothesis on its source. Mathematical reasoning resorts to tricks
like “gauge transformations” to impose such an unphysical statement.

In ref. [53], we started with the two postulated and approximate Galilean sets of Maxwell-Minkowski equations in
continuous media, and we obtained the following field transformations for a continuous medium moving with a small
velocity compared to light (Galilean approximation):

Magnetic limit Electric limit

ρm = ρ′m + v · j′m/c2, ρe = ρ′e,

jm = j′m, je = j′e − ρ′ev,

Bm = B′

m, B = B′

e + v × E′

e/c2,

Em = E′

m − v × B′

m, Ee = E′

e,

Hm = H′

m, He = H′

e + v × D′

e,

Dm = D′

m − v × H′

m/c2, De = D′

e,

Mm = M′

m, Me = M′

e − v × P′

e,

Pm = P′

m + v × M′

m/c2, Pe = P′

e.

Most of these transformations are well known to electrical engineers. According to us, the oldest reference to
them is the book by Woodson and Melcher in 1968, cited in [21]. However, the associated sets of approximate Maxwell
equations were postulated up to now and the Galilean constitutive equations have not been written so far. For example,
the two approximate sets have been used separately since a long time in electrohydrodynamics for the electric limit
and in magnetohydrodynamics for the magnetic limit.

The engineering approach differs from the physicists’ approach first introduced by Le Bellac and Levy-Leblond in
1973 [45] since the last authors focused on the Galilean limits of four-vectors starting from the Lorentz transformations
whereas the engineers applied directly the galilean transformations of space-time to approximate sets of equations
relying on orders of magnitude and physical consideration about the relative magnitude between the magnetic diffusion
time, the charge relaxation time and the electromagnetic waves transit time [24].

In ref. [54], we demonstrated both sets of approximation starting from the relativistic theory and using the potentials
formulation of Electromagnetism by pointing out the crucial role of the “gauge conditions”. In addition, we recalled
the boundary conditions for moving media (see [84–88] as well), with n being the unit vector between two media
denoted by the superscripts 1 and 2, K the density of surface current sheet, σ the surface charge density, Σ the surface
separating both media, and vn the projection of the relative velocity on the normal of Σ,

Magnetic limit Electric limit

n × (H2
m − H1

m) = K, n × (E2
e − E1

e) = 0,

n · (B2
m − B1

m) = 0, n · (D2
e − D1

e) = σ,

n · (j2m − j1m) + ∇Σ · K = 0, n · (j2e − j1e) + ∇Σ · K = vn(ρ2
e − ρ1

e) − ∂tσ,

n × (E2
m − E1

m) = vn(B2
m − B1

m), n × (H2
e − H1

e) = K + vnn × [n × (D2
e − D1

e)].

4 Galilean constitutive equations

Now, starting with the postulate set of “fully relativistic” Maxwell-Minkowski equations [62], we will use orders of
magnitude in order to derive the two approximate Galilean constitutive equations for both excitation fields.

As a very large part of the physics community is unaware of the existence of Galilean Electromagnetism, the
Galilean constitutive relations will be derived from the known Relativistic Maxwell-Minkowski theory. Then, it will be
straightforward to derive them from the Galilean transformations of the fields/inductions (see the previous section)
thanks to the two postulated Galilean sets of Maxwell’s equations. So, we can avoid, in the end, the Lorentz group
completely.

Following the procedure adopted in refs. [52–55], a Galilean limit is obtained in two steps. First, we introduce into
eqs. (11) the quasi-static approximation v % c [77–82]. This assumption leads to equations which do not obey the
group additivity property (and are clearly not Galilean covariant),

D ( εE +

(

ε −
1

µc2

)

v × (B −
v × E

c2
),

H (
B

µ
+

(

ε −
1

µc2

)

v × (E + v × B). (12)
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At this stage, only the Fitzgerald-Lorentz contraction factor is set equal to unity. Next, an assumption on the relative
magnitude of the remaining terms is made in order to drop the terms which break the Galilean covariance. One can
see that the magnetic limit corresponds to the assumption Em ∼ vBm % cBm (see refs. [52–55]). Hence, the Galilean
magnetic constitutive equations are

Dm ( εEm +

(

ε −
1

µc2

)

v × Bm,

Hm (
Bm

µ
. (13)

The electric limit, which corresponds to cBe ∼ vEe/c % Ee (see refs. [52–55]), leads to the following Galilean electric
constitutive equations:

De ( εEe,

He (
Be

µ
+

(

ε −
1

µc2

)

v × Ee

c2
. (14)

A similar simplification could have been done with eq. (9) instead of eq. (11). Both sets (13) and (14) do form a
transformation group. Moreover, they can be obtained directly from the Minkowski constitutive equations (7), since
the magnetic limit transformations follow from

Dm +
1

c2
v × Hm ( ε (Em + v × Bm) ,

Bm ( µHm, (15)

in accordance with the Galilean magnetic Maxwell-Minkowski equations,

∇ × Em = −∂tBm, Faraday,

∇ · Bm = 0, Thomson,

∇ × Hm = jm, Ampère,

∇ · Dm = ρm, Gauss.

(16)

The electric limit transformations come from

De ( εEe,

Be −
1

c2
v × Ee ( µ(He − v × De), (17)

in accordance with the Galilean electric Maxwell-Minkowski equations,

∇ × Ee = 0, Faraday,

∇ · Be = 0, Thomson,

∇ × He = je + ∂tDe, Ampère,

∇ · De = ρe, Gauss.

(18)

It is now obvious to demonstrate the Galilean constitutive relations starting from the fields/inductions Galilean
transformations recalled in sect. 2. Let us do it for the magnetic limit. We combine first both Galilean transformations
H′

m = Hm and B′

m = Bm into the Minkowski’s constitutive relation B′

m = µH′

m in the moving frame to get the one
in the static frame Bm = µHm. Then, similarly using both D′

m = Dm + v × Hm/c2 and E′

m = Em + v × Bm into
D′

m = εE′

m, one ends up with Dm ( εEm + (ε − 1
µc2 )v × Bm as expected. We point out forcefully that the Galilean

constitutive relations can be derived either directly without using the Lorentz symmetry or by taking the quasi-static
limit(s) of the Special Relativity theory.

In their seminal paper published in 1973, Le Bellac and Lévy-Leblond underlined that combinations of the electric
and magnetic limits are of course possible [45]. Hence, the following Galilean displacement field is allowed:

DG = Dm + De ( ε(Ee + Em) +

(

ε −
1

µc2

)

v × Bm, (19)

as we will see in a particular case (Em = 0) for the Wilson and Wilson’s effect.
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5 Rowland-Vasilescu Karpen’s effect

In 1876, H.A. Rowland identified an equivalence between the conduction current and the convection current [89–95].
Indeed, he proved that the motion of electric charges has the same magnetic effect as a current given by Ohm’s law
within conductors. Rowland’s effect is an example of the Galilean electric limit. The charges in motion satisfy the
Galilean transformations j′ = j + ρv, and ρ′ = ρ.

A modern reproduction of this experiment consists in connecting a disk of hard rubber or an old phonograph record
to the shaft of an electric motor. The disk is electrostatically charged by rubbing it with a piece of woolen cloth. Then,
it is set in rotation and a magnetic compass is approached close to it. The needle is deflected; the faster the rotation,
the greater the deflection.

The disk has a radius R and a thickness h. We assume that its volume is charged uniformly with a total charge Q.
Hence, the volume charge density is ρ = Q/(πR2h). Let us call dτ the volume element of the disk between the radii
r and r + dr. When the disk is rotating at constant angular frequency ω, the volume dτ carries out a charge ρdτ at
a velocity v = rωeθ. Hence, the volume current density in the lab frame is j = −ρv = −Q/(πR2h)v since there is
no current density, that is, j′ = 0 in the frame of the disk. The equivalent current intensity dI, which circulates in
dτ through the surface dS = hdr, is given by dI = j · dS = −Q/(πR2h)ωrhdr = −Qωr/(πR2)dr. If one denotes the
surface charge density by σ = Q/(πR2), then the equivalent current becomes dI = −σωrdr. For a constant rotation,
we can define the period T = 2π/ω, and the equivalent current is given by the formula dI = −σ2πrdr/T . Here,
we see that is it not necessary to assume a distribution of charge in volume since the result depends on the surface
distribution σ.

The disk is equivalent to a set of concentric rings each one carrying a current dI. As is well known, a circular ring
of current creates a magnetic induction at a perpendicular distance z from its center given by

dB =
µ0dI sin3(φ)

2r
ez, (20)

where the angle φ is such that tan(φ) = r/z.
The integration over the entire disk is straightforward,

B = −
µ0σω

2
z

(√
R2 + z2

z
+

z
√

R2 + z2
− 2

)

ez. (21)

When R % z, one can expand the preceding formula up to the fourth order in the small parameter R/z and obtain

B ( −
µ0σω

8

R4

z3
ez. (22)

Now, let us recall the expression for the magnetic induction produced by a magnetic dipole with moment m = mez,

B =
µ0

4π

2m

z3
ez. (23)

We conclude that a spinning charged disk is equivalent to a magnetic dipole of moment m = −πσωR4/4. One
easily checks that m =

∫

disk dm =
∫

disk πr2dI.
Originally, Rowland used a dielectric disk (ebonite) with a thin gold leaf on each side first [89]. Then, Rowland

and Hutchinson utilized a metallic coating separated in sectors in order to avoid conduction currents [90]. Himstedt
used glass with a surface treatment of lead. In both cases, a deflection of a metallic needle was observed [91].

In 1904, Nicolae Vasilescu Karpen defended his doctor’s degree thesis by which he proved experimentally, with a
high precision, that the magnetic field produced by the convection current is the same with the effect produced by the
conduction current, in any conditions [96–98]. The doctor’s degree examination commission (panel) was composed of
Gabriel Lippmann, chairman, Henri Poincaré and Henri Moissan, members. For proving it, N. Vasilescu Karpen chose
an indirect method based on the use of the electromotive force induced in a coil by electromagnetic induction. For
this purpose, he conceived and achieved an apparatus having a rotating metalled disk (made of ebonite and covered
with tinfoil on both parts) placed between two fixed metalled armatures (each being a rectangular glass blade covered
also with tinfoil and having a central circular hole). The disk was connected through a system of moving contacts to
one of the two terminals of an alternating current supply, whereas the two armatures were together connected to the
other terminal of the alternating current supply. The disk and armatures were in vertical position. On each part of
the disc, outside the armatures, a coaxial coil was mounted. The working circuit includes the coils and a capacitor.
The disk was driven at the rotational speed of 200–800 rev/min by a direct-current motor. The electric charge on the
rotating disk produces the convection current, therefore a magnetic field having a frequency like the supply voltage.
Hence the electromotive force induced in the coils varies with the same frequency. By tuning the parameters of the
working circuit to the frequency of the voltage supplying the apparatus, he obtained the greatest possible value of the
current in the circuit, which could be measured with high precision, the results removing the doubts, which existed at
that time [98].
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6 Roentgen-Eichenwald’s effect

The experiments of W.C. Roentgen (1885) and A. Eichenwald (1903) demonstrate that a dielectric which moves at
a constant speed in an electric field produced a magnetic field due to the convection current of the moving induced
surface charges [99–107]. All the fields are supposed to be stationary.

In the experiments of Roentgen, a disk made of a dielectric material rotates between two ring electrodes (each
having the form of a plate with a hole at its center) at rest: the lower one is grounded whereas the upper one consists
of two parts with opposite electric potentials. The sign of the polarization inside the dielectric changes two times
per turn. Roentgen observed qualitatively the deflection of a magnetic needle due to the magnetic field created by
the varying displacement field [99–104]. In 1888, he reported: “I rotated a round glass plane between two horizontal
condenser plates (or a hard rubber plane), the upper of which was continuously derived to earth, the one below could
be loaded with positive or negative electricity from a source of electricity. Close to the upper condenser plane hung
one of two magnetic needles which were connected to a very sensitive system; their direction was vertical to a radius
of the plane and its centre was above the plane next to the edge of it. The deviations of the needles, which occurred
during the commutation of the condenser’s load, could be observed with the help of a binocular, a mirror and a scale.
These experiments showed that the needle was deviated every time during commutation; it was directed in such a way
as if the direction of an allegedly existing current had been reversed. The effect of the movement of the positive poles
to the needles corresponded with the flow of a current, flowing in the same direction, the movement of the negative
poles that of a current, flowing in the opposite direction”. It was the first experimental proof of Maxwell’s prediction
(without waves): all the currents are closed either geometrically or by the displacement current. It anticipated the
experimental evidence put forward by H. Hertz with electromagnetic waves.

A. Eichenwald later made quantitative measurements [105–107]. His setup featured a capacitor with two metallic
rings of breadth a cut by a small interspace. A rubber dielectric (permittivity ε) was placed between both electrodes. In
a first series of experiments, the insulator was fixed while the rings were rotated. In a second series, Eichenwald put into
motion altogether the dielectric and the capacitor plates. Each plate carries a surface density of charges σp = εE where
E is the applied electric field. The dielectric disk has obviously the opposite charge when at rest. Following Rowland’s
work, one would expect, in the first series of experiments, a convection current IR = σpav = εEav when the insulator
of breadth a is in motion at constant velocity v. However, Eichenwald measured a lower value IE1

= (ε−ε0)Eav = σiav
as if the surface charge of the insulator in motion was σi = (ε − ε0)E. This polarization charge due to motion would
correspond to the static charge at the interface of a metallic conductor created by a reduced effective electric field
Ei = (1− ε0/ε)E (see [108] where Pauli shows how the introduction of an insulator in a capacitor modifies the surface
charges). In the second series of experiments, Eichenwald observed a current which was independent of the dielectric
constant of the insulator [105–107]. Indeed, the contributions depending on ε of both σp and σi cancel each other
IE2

= (σp − σi)av = εEav − (ε − ε0)Eav = ε0Eav.

7 Wilson’s effect and homopolar induction

The experiment of Wilson demonstrates that a dielectric which moves at a constant speed v = ωr in an induction field
produced a polarization inside itself. All the fields are supposed to be stationary.

Superficial electric charges appear on a dielectric in motion when submitted to a uniform induction field B = Bez.
H.A. Wilson designed a dielectric with the shape of a hollow cylinder (thickness d = R2 −R1) that he put in the gap
of a magnet [109–115].

Two setups are described in the literature:

– Either both internal and external sides of the cylinder are coated with metallic conductors connected to an elec-
trometer. The latter has a capacity and both surfaces are charged in opposition.

– Or the dielectric tube rotates between the plates of a condenser which is short-circuited.

If the cylinder was an ohmic conductor, conduction electrons would be driven toward the axis by the “motional”
electric field v × B. Positive charges would appear on the periphery of the cylinder. Hence, a negative electrostatic
volume charge density must balance the surface charge density, the resulting E cancels the motional field. Seen from
the cylinder in motion, the electric field transforms according to the magnetic limit of LBLL: E′

m ( Em + v × Bm =
Em + vBmer. Hence, E′

m = 0.
According to the magnetic limit of Galilean Electromagnetism, an ohmic conductor with the shape of a cylindrical

tube rotating in a vertical induction field in the laboratory rest frame is submitted to the potential difference,

∆OhmV12 ( −
∫ R2

R1

vBmdr ( −
Bmω(R2

2 − R2
1)

2
. (24)
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If the gap between the inner and outer faces of the cylinder is small (d % R1 ( R2 ( R), one would have obtained

∆OhmV12 ( −BmRωd, (25)

which does correspond to the usual formula for the so-called homopolar induction.
The derivation of Wilson in his paper of 1905 is based on the following formula [109]: DWilson = ε0εrE + ε0(εr −

1)v × B which he justified by the facts that the vacuum displacement is not influenced by the cylinder’s motion and
only the bounded electrons within the dielectric in motion are submitted to the electromotive force v × B.

Then, he assumed that the total displacement is circuital ∇ ·D = 0 since there is no free charges. As a consequence,
whatever the radius r is, we have the relation 2πrLD = −Q where L is the length of the cylinder and −Q the charge
induced on the inner face of the outer metallic coating because Q denotes the charge induced by the polarization on
the outer face of the rotating cylinder.

The setup used by Harold Wilson is such that the coatings are linked to an electrometer [109]. The electric field
measured by the electrometer is ∆WilsonV12 = −Q/Ce where Ce is the capacity of the electrometer. We find

−Q = 2πrLε0

[

−εr
dV

dr
+ (εr − 1)2πfrB

]

. (26)

Now, we can integrate in order to derive the difference of potential in the rest frame,

dV =
Q

2πLε0εr

dr

r
+

(

1 −
1

εr

)

2πfBrdr, (27)

that is

V2 − V1 =
Q

2πLε0εr
Log

R2

R1
+

(

1 −
1

εr

)

πfB(R2
2 − R2

1). (28)

The capacity of a dielectric tube is Cd = 2πε0εr
L

Log
R2
R1

. Hence,

∆WilsonV12 = −
Q

Ce
=

Q

Cd
+

(

1 −
1

εr

)

πfB(R2
2 − R2

1) =
Q

Cd
−

(

1 −
1

εr

)

∆OhmV12. (29)

The control parameter in the experiments is the frequency of rotation (f = ω/2π). In the case where εr is close to
unity as for air, the potential difference vanishes as in the first experimental attempts by Blondot before the successful
experiments of Wilson (with εr $= 1) who showed that the potential difference is a linear function of the frequency of
rotation.

8 Wilson and Wilson’s effect

8.1 Historical treatment

Soon after the experiment of Wilson, Einstein and Laub in 1908 [71–74] proposed to use a magnetic insulator in order
to discriminate between the various theories of electrodynamics in moving media. Then, Marjorie and Harold Wilson
created an artificial medium with both magnetic and electric properties by plunging steel balls in a wax forming
the cylinder with the same setup as in the experiment of Harold Wilson [116,39,40,117–120,32,44]. Einstein and
Laub [71–74] used one of the formula derived in sect. 1,

D =
1

1 − µεv2

[

ε

(

1 −
v2

c2

)

E +

(

µε −
1

c2

)

v × H − ε

(

µε −
1

c2

)

(v · E)v

]

. (30)

With the peculiar geometry of the experiment, it becomes

Dr =
1

1 − µεv2

[

ε

(

1 −
v2

c2

)

Er +

(

µε −
1

c2

)

vHz

]

. (31)

Now, if one assume that the capacitor’s plates are short-circuited, then Er = 0

Dr =
(µε − 1/c2)

(1 − µεv2)
vHz =

(µrεr − 1)

(1 − µrεrv2/c2)

vHz

c2
. (32)
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Einstein and Laub considered the following approximation v % c, then they obtained from the previous relativistic
formula the expression [71–75],

Dr ( (µrεr − 1)
vHz

c2
. (33)

Now, with the additional “Galilean” constitutive relations Hz = Bz/(µ0µr) and Dr = ε0Er + Pr = σ the surface
charge in the laboratory frame, we get a formula which was actually tested in the experiments of Wilson and Wilson
using an electrometer,

σ ( (µrεr − 1)
ε0
µr

vBz = ε0
(µrεr − 1)

µr
vBz. (34)

This Einstein and Laub derivation is straightforward but has no real physical insights. Its major drawback is that it
mixes a relativistic formula and Galilean ones. Experimentally, the factor (εr−1/µr) was recovered and was considered
as a major argument for the relativity theory against the previous theory of Lorentz which predicted only a (εr − 1)
factor (tested in Wilson’s first experiment and which discarded, for example, Hertz’s theory) since it did not take into
account the effect of magnetization that is as if µr = 1.

8.2 Galilean treatment

The Galilean treatment is now obvious since the Wilson and Wilson’s experiment is one example of the superposition
derived in sect. 4 (eq. (19)) for the simple case Em = 0,

DWilson ( εEe +

(

ε −
1

µc2

)

v × Bm. (35)

One has DWilson $= 0 when the capacitor plates are not short-circuited. One replaces the formula used by Wilson
(DWilson = εE + (ε − ε0)v × B) by the last one and we can calculate accordingly the potential difference taking into
account the influence of the relative permeabilitty in the Wilson and Wilson’s experiment.

Similarly to the Wilson effect, we get

∆WilsonsV12 = −
Q

Ce
=

Q

Cd
+

(

1 −
1

µrεr

)

πfB(R2
2 − R2

1) =
Q

Cd
−

(

1 −
1

µrεr

)

∆OhmV12. (36)

Otherwise, one has directly

εEe +

(

ε −
1

µc2

)

v × Bm ( 0, (37)

when the electrometer is not used. With Ee = −∇V = −(1 − 1
εrµr

)v × Bm, one finds the observed voltage on sliding
contacts,

∆WilsonV12 =

(

1 −
1

µrεr

)

∆OhmV12 ( −
(

1 −
1

µrεr

)

πfB(R2
2 − R2

1). (38)

The measurements by the Wilsons and their modern reproduction by Hertzberg et al. displayed unambiguously a
linear relationship between the voltage and the frequency as well as the factor 1−1/(εrµr) [116,39,40,117–120,32,44].
However, what this experiment validates is first of all the Galilean Electrodynamics à la Minkowski. The Special
Relativity prediction was not tested so far contrary to what was/is believed and is unlikely to be because of the rapid
velocities it implies. . .

Concluding remarks

One century after the seminal work of Minkowski, the electrodynamics of moving continuous media is still a subject of
investigations for research and should be included in physics lectures as early as possible. As a conclusion, Minkowski’s
electrodynamics is useless when one deals with low velocities. However, only the Maxwell-Minkowski equations are
able to predict correctly the optics of moving media like the Cerenkov radiation [121] or the Fresnel-Fizeau drag [122].
The Galilean limits provide an efficient way to analyse a large amount of phenomena studied by both engineers and
physicists.

We applied the taking of limit à la Lévy-Leblond to the constitutive relations introduced by Minkowski in 1908
to explain all the experiments of electrodynamics of moving bodies. Indeed, the continuous polarized media are
described by a functional relation between fields on one hand and inductions on the other hand. Usually, they are
linear via coefficients of proportionality (permittivity for insulators, permeability for magnets) but are valid only at
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rest. Minkowski made the hypothesis that the form in the moving frame of reference of the constitutive relations was
the same as in the rest and that to obtain their expression in the laboratory frame, it was necessary to apply the
transformations of Lorentz to the fields and their inductions. The constitutive relations become functions of the relative
speed, the lengths factor of the FitzGerald-Lorentz contraction and bring in crossed terms. For example, the magnetic
induction in the laboratory frame expresses itself not only with the magnetic field but also with the electric field of the
same frame. In the past, the physicists were able to interpret all the experiments of electrodynamics of moving bodies
with the relativist constitutive Minkowski relations. However, the presence of the factor of contraction is an indication
that the theory of Minkowski is particularly adapted to high speed and thus to experiments of optics of moving bodies
like the Fresnel-Fizeau’s effect or to experiments of electrodynamics of moving bodies like the Vavylov-Cherenkov’s
effect with fast particles where the phenomena inherent to Special Relativity are obvious (contraction of the lengths
and the dilation of time). For the experiments of electrodynamics of moving bodies with low speeds, the Galilean
theory is the most adapted because it is easier of stake in work from the calculus point of view and does not bring in
the kinematics effect of Special Relativity which are absolutely unimportant in the Galilean limit. In conclusion, the
Galilean Electromagnetism discovered after the Relativistic Electromagnetism seems to have to take its place next to
the Newton’s Mechanics. These two theories have, naturally, a domain of limited validity, but stay nevertheless, very
useful in the practical explanation of the Galilean phenomena. Let us remind the prediction of Poincaré on the future of
Newton’s theory after the invention of Special Relativity: “Today certain physicists want to adopt a new convention. . .
Those who are not of this opinion can keep the former in order not to disturb their old customs. I believe, between us,
that it is what they will make even for a long time”. Let us wish that the Galilean electromagnetism replaces Special
Relativity in the common practice. . .

A long time ago, Laue then Pauli then Arzeliès lamented for the fact that the generalized Roentgen-Einchenwald’s
effect (dual to the Wilson and Wilson effect) taking into account the factor (µε − 1/c2) has never been performed
so far (we leave the derivation to the reader starting with the constitutive relations He ( Be

µ + (ε − 1
µc2 )v×Ee

c2 and

De ( εEe): some experimental works are needed to complete our understanding of moving polarized media. We plan
to come back on the galilean limits of constitutive relations by focusing on the mathematical duality between both
limits as described by Ridgely for the relativistic case [41,42]. . .

I would like to thank Andrei Nicolaide for enlightening discussions, especially on the works of Vasilescu Karpen. Marc de
Montigny suggested several improvements in an earlier version of the paper.
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20. W.G.V. Rosser, Classical Electromagnetism via Relativity (Butherworths, London, 1968).
21. H.H. Woodson, J.R. Melcher Electromechanical Dynamics (Wiley, New York, 1968).
22. J. Van Bladel, Relativity and Engineering, in Springer Series in Electrophysics, Vol. 15 (Springer-Verlag, 1984).
23. D. Schieber, Electromagnetic Induction Phenomena, in Springer Series in Electrophysics, Vol. 16 (Springer-Verlag, 1986).
24. J.R. Melcher, H.A. Haus, Electromagnetic Fields and Energy (Hypermedia Teaching Facility, M.I.T., 1998) available at:

http://web.mit.edu/6.013 book/www/.



Eur. Phys. J. Plus (2013) 128: 81 Page 13 of 14

25. F.W. Hehl, Y.N. Obukhov, Foundations of Classical Electrodynamics: Charge, Flux, and Metric (Birkhauser, Boston, MA,
2003).

26. I. Brevik, Phys. Rep. 52, 133 (1979).
27. R.N.C. Pfeifer, T.A. Nieminen, N.R. Heckenberg, H. Rubinsztein-Dunlop, Rev. Mod. Phys. 79, 1197 (2007).
28. F.W. Hehl, Ann. Phys. 17, 691 (2008).
29. Y.N. Obukhov, Ann. Phys. 17, 830 (2008).
30. R.E. Rosensweig, Basic Equations for Magnetic Fluids with Internal Rotations in Ferrofluids, Magnetically Controllable

Fluids and Their Applications, edited by S. Odenbach, Springer Lecture Series in Physics, Vol. 594 (Springer, Berlin,
2002) pp. 61–84.

31. R.E. Rosensweig, J. Chem. Phys. 121, 1228 (2004).
32. J.L. Ericksen, Contin. Mech. Thermodyn. 17, 361 (2006).
33. J. Van Bladel, Proc. IEEE 61, 260 (1973).
34. J. Van Bladel, Proc. IEEE 64, 301 (1976).
35. D. Schieber, Appl. Phys. A: Mater. Sci. Process. 14, 327 (1977).
36. D. Schieber, Elect. Eng. (Arch. Elektro.) 63, 111 (1981).
37. D. Schieber, Elect. Eng. (Arch. Elektro.) 67, 113 (1984).
38. D. Schieber, Elect. Eng. (Arch. Elektro.) 69, 121 (1986).
39. G.N. Pellegrini, A.R. Swift, Am. J. Phys. 63, 694 (1995).
40. T.A. Weber, Am. J. Phys. 65, 946 (1997).
41. C.T. Ridgely, Am. J. Phys. 66, 114 (1998).
42. C.T. Ridgely, Am. J. Phys. 67, 414 (1999).
43. N.N. Rozanov, G.B. Sochilin, Phys. Uspekhi 49, 407 (2006).
44. C.E.S. Canovan, R.W. Tucker, Am. J. Phys. 78, 1181 (2010).
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