
DOI 10.1140/epje/i2010-10645-8

Regular Article

Eur. Phys. J. E 33, 11–18 (2010) THE EUROPEAN

PHYSICAL JOURNAL E

Pattern formation in bubbles emerging periodically from a liquid
free surface
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Abstract. Patterns formed by centimeter scale bubbles on the free surface of a viscous liquid are investi-
gated in a cylindrical container. These bubbles emerge periodically at the surface and interact with each
other in the central zone. Their radial emission, due to interaction and radial surface flow, leads to the for-
mation of a variety of patterns. Different star-like and spiral patterns appear spontaneously by increasing
the bubble emergence frequency. It is found that these patterns are due to a constant angular shift in the
bubble emission direction. Measurements of this angular shift show a supercritical bifurcation accompa-
nied by a transition from a pattern of two opposed straight arms to spiral patterns. By applying the tools
and concepts from the study of leaf arrangement in botany (phyllotaxis), the recognized patterns and the
mechanism of the pattern formation are discussed. Close similarities to the leaf arrangement are found in
the behavior of the angular shift and the patterns. These findings suggest that the observed patterns are
formed by a packing mechanism of successively appearing elements (bubbles), which is similar to that of
the leaves at the earliest stage of phyllotaxis.

1 Introduction

The study of the arrangement of leaves on plant stems,
phyllotaxis, has a long history. Theophrastus (370 B.C.-
285 B.C.), in the Peripatetic school, left writing that shows
ancient scholars’ awareness of the regularity of leaf ar-
rangement [1]. da Vinci (1452-1519) remarked that leaves
on the stems of many plants are located at a constant an-
gular shift around the stem and that seeds in a sunflower
capitulum exhibit spiral patterns [2]. These features exhib-
ited by plants are now described, respectively, in terms of
the divergence angle, i.e., the angular shift ψ between con-
secutive elements (leaves, seeds, etc.) and the parastichies,
i.e., the spirals determined by joining each element to its
nearest neighbor to the right and to the left. The numbers
of right and left parastichies characterize a pattern and are
known to develop spatially. Schimper associated common
divergence angles with the ratios of two successive terms of
the Fibonacci sequence, which is defined by the recurrence
relation un+1 = un + un−1 (n = 1, 2, . . .) [3]. Auguste and
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Louis Bravais considered the number of parastichies and
related them to a unique divergence angle, ψG = 2π(1−τ),

where τ is the golden mean τ = (
√

5 − 1)/2 and equal to
lim(un/un+1) [4,5]. Hofmeister attracted attention to the
morphological process in the apex where the primordia
of leaves are formed successively in the largest available
space [6]. van Iterson computed a bifurcation diagram by
considering packing and contact of the primordia. It en-
ables one to deduce the divergence angle and the numbers
of parastichies from the primordium size relative to the
apex [7].

Very recently, a study on the crucial role of the plant
hormone, auxin, in the patterning mechanism of phyl-
lotaxis has been developed [8]. It was demonstrated that
cellular carrier proteins are responsible for the transporta-
tion of auxin through plant tissues and that the heteroge-
neous nature of its accumulation is characterized by a min-
imum length of separation between the primordia. Phys-
ical modeling of the phyllotaxis has also started recently.
Levitov calculated the energy of flux lattices in a layered
superconductor [9]. He found that lattices at the ground
state exhibit the same characteristics as the van Iterson
diagram with pruned branches. Nisoli et al. performed
an experiment with repulsive magnets on a cylinder and
showed that their arrangement in a ground state is sim-
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(a) Two fixed arms
(Q = 2200 mm3/s, T = 55.6 ms)

(b) Two rotating arms
(Q = 1270 mm3/s, T = 53.8 ms)

(c) Nine rotating arms
(Q = 1300 mm3/s, T = 52.8 ms)

(d) Seven fixed arms
(Q = 1340 mm3/s, T = 52.0 ms)

(e) Seven rotating arms
(Q = 1360 mm3/s, T = 51.2 ms)

(f) Five rotating arms
(Q = 1400 mm3/s, T = 50.6 ms)

(g) Five fixed arms
(Q = 1460 mm3/s, T = 49.6 ms)

(h) Eight fixed arms
(Q = 1630 mm3/s, T = 46.6 ms)

(i) Three rotating arms
(Q = 1710 mm3/s, T = 45.6 ms)

Fig. 1. Different patterns formed by bubbles emerging at the surface of silicone oil with different periods T (µ = 0.033 Pa s,
d = 0.8 mm, H = 87 mm except the first picture, for which µ = 0.072 Pa s, d = 1.4 mm, H = 78 mm). The patterns (b)-(i) are
obtained by increasing the flow rate Q of the gas.

ilar to phyllotaxis [10]. Douady and Couder considered
the phyllotaxis to be a self-organizing iterated process
and implemented an original physical experiment [11–14].
Drops of water-based ferrofluid were released with a con-
stant period and fell in silicone oil towards a circular bump
placed at the center of a flat bottom. The system was
subjected to a magnetic field gradient so that magnetized
drops were repelled from each other and advected radially
at the bottom. By the repulsion and advection, they sim-
ulated the packing effect in the apex and the growth of a
plant, and succeeded in reproducing different spiral pat-
terns similar to botanical ones. Numerical and theoretical
computations showed how the van Iterson bifurcation di-
agram was pruned to explain the predominant occurrence
of a divergence angle ψG in plants and the parastichy num-
bers composed of two successive terms of the Fibonacci
sequence [11,12,15]. Other physical experiments showing
spontaneous spiral generation can also be found in the lit-
erature, e.g., the one performed by Habibi et al. [16]. They
reported the hydrodynamic instability of a liquid filament

falling and coiling on a solid surface. Different patterns
were formed by bubbles trapped in the coil and advected
radially on the surface.

In the present paper, we report experiments performed
with a novel physical system showing spontaneous phyl-
lotactic pattern formation, i.e., pattern formation caused
by a packing-advection mechanism of successively appear-
ing elements. The system is a simple hydrodynamic setup
with circular symmetry and consists in a periodical emer-
gence of centimeter-scale bubbles at a fixed point on a liq-
uid surface. These bubbles ascend in line and interact with
preceding and succeeding ones at the emergence point.
They are then advected radially outward from the emer-
gence point by a surface flow generated by the ascending
bubbles themselves, forming regular patterns on the sur-
face within a certain range of relevant parameters. In spite
of the simplicity of the system, the variety of formed pat-
terns is large: rotating and fixed multi-arms of bubbles are
observed, as shown in fig. 1. A bifurcation from the pat-
tern with two fixed arms (e.g., fig. 1(a)) to other patterns
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Fig. 2. Schematic illustration of the experimental setup.

with fixed and rotating arms (e.g., fig. 1(b)-(i)) is found.
After presenting our observations and measurements, we
will discuss this bifurcation and show the relation of the
present pattern formation to phyllotaxis.

2 Experimental setup and measurement

techniques

The experimental setup consists of a vertical cylindrical
container filled with a test liquid, a bubble formation de-
vice immersed in the liquid, a laser interception bubble
detection system, a gas source and devices for optical
observation (see fig. 2). The container is a glass beaker
of inner diameter R = 65mm and height 130mm. Test
liquids are silicone oils of different viscosities µ (density
ρ ≈ 970 kg/m3 and surface tension γ ≈ 20mN/m for all
the oils). The considered viscosities µ are 0.033, 0.048,
0.072 and 0.097Pa s. The depth of the liquid, H, is typi-
cally 80mm.

The bubble formation device is a chamber with a vol-
ume of approximately 8000mm3. This chamber has an in-
let with a diameter of roughly 0.5mm for gas supply and
an opening closed by a screw top. Bubbles are formed at
a circular orifice of diameter d at the center of the screw
top. Different tops are prepared for different orifice diame-
ters in the range 0.8 ≤ d ≤ 3.0mm. The bubble formation
device is flush-mounted on a circular solid plate immersed
at the bottom of the beaker. Nitrogen gas is supplied to
the cavity from a compressed gas source and bubbles are
formed at the orifice one by one with a constant interval
T . The gas flow is controlled by a metering valve. Its flow
rate Q is measured by a rotameter (BROOKS 1355). The
range of Q is 140 ≤ Q ≤ 4200mm3/s. The bubble for-
mation period T is determined by the detection of bubble
presence at the orifice. A low-power laser beam passes
above the orifice at a distance of 2mm. A photodetector
aligned with the beam detects the presence or absence of
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Fig. 3. Bubble labeling and divergence angle measurement.
Bubbles are labeled chronologically and the direction θj (j =
1, 2, 3, . . .) of the radial motion of each bubble is measured.
Determined divergence angles ∆θj (= θj+1 − θj) group well
around their average value ψ.

bubble formation by a low or high output signal, respec-
tively. The signal is measured on an oscilloscope.

The volume of formed bubbles QT ranges between
30 and 250mm3. The corresponding volume-equivalent
diameter De = (6/π · QT )1/3 lies between 3.9mm and
7.8mm. For a given orifice and a given liquid, the period
T and the size De are controlled simultaneously by the
flow rate Q.

A high-speed video camera (M30 JAI) is positioned
above the container with the downward optical axis co-
incident with the container’s central axis. The camera is
used in combination with a digital image acquisition card
(Imaging Tech. Inc.) to capture images of the liquid sur-
face and bubbles at a typical rate of 120 images per sec-
ond. The spatial resolution is typically 0.13mm/pix. The
images are stored on a personal computer for later anal-
ysis. Determination of the divergence angle ψ, i.e., the
angular difference of emission direction between two suc-
cessive bubbles, is performed by measuring the azimuthal
directions of the bubbles’ radial motion in the top view im-
ages. Bubbles emerging at the surface are labeled chrono-
logically as j = 1, 2, 3, . . . (see the picture in fig. 3). The
direction θj of motion for the j-th emerging bubble is mea-
sured on images near the center of the surface (when the
bubble is advected up to a distance of around 1.5De from
the center). The divergences ∆θj = θj+ − θj for different
j are constant with fluctuations, as shown in the lower
half of fig. 3. Their average value ψ is estimated from ∆θj

for at least 30 successive bubbles.
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t = 0 ms 16.6 ms 57.9 ms
(a) Experiment yielding a pattern with two fixed arms

(Q = 280 mm3/s, T = 52 ms)

t = 0 ms 16.6 ms 41.4 ms
(b) Experiment yielding a pattern with two rotating arms

(Q = 1200 mm3/s, T = 36 ms)

Fig. 4. Successive side-view pictures of bubble behavior in
the central deformed surface zone (0.044 Pa s, H = 174 mm,
d = 1.2 mm). Bubbles are numbered in order of appearance.

3 Results

3.1 Bubble motion

Bubbles form and grow up at the orifice of the bubble
formation device from continuous gas supply. They detach
at a certain size one by one from the orifice. The bubbles
released into the liquid ascend vertically due to buoyancy.
Although this ascending motion is first accelerated, the
velocity of the bubbles is saturated by the viscous drag
exerted by the liquid. This saturation occurs when the
bubbles travel a distance of a few bubble diameters from
the orifice, which is much smaller than the liquid height H.
The bubbles impact the liquid surface with the terminal
velocity and emerge at the surface.

At the point of the emergence, the surface deforms in
the shape of a bell due to the upward liquid jet induced
by the bubbles’ rising motion. The deformation has an
extent of a few bubble diameters. Inside this deformed
surface zone, emerging bubbles interact with each other.
An emerging bubble encounters and pushes the preceding
ones near the top of the zone. In fig. 4, images captured
by the high-speed video camera pointing horizontally at
the central zone of the surface with a small downward
tilt are shown for different flow rates. The luminous parts
correspond to the deformed surface zone. At small flow
rates that yield a divergence angle equal to π, as reported
later in sect. 3.3, only two bubbles are in contact at the
moment of radial bubble emission (see the central image
in (a)). With higher flow rates, it is observed that three
bubbles are in contact just before the emission as seen in
the central image in (b). In the latter situation, the result-
ing divergence angle ψ is smaller than π. The deformed
surface zone would be the analogue of the apex in plant
systems where the primordia of leaves are packed and in

contact with each other. The pushed bubble is emitted
radially from the center along the surface and can be ad-
vected further away by the radial surface flow of the liquid.
This flow is generated by the bubble ascending motion, as
illustrated in fig. 2, and provides an advection mechanism
for phyllotactic pattern formation, similar to the radial
gradient of a magnetic field in Douady and Couder’s ex-
periment. This simulates plant growth in botany.

3.2 Dimensionless groups

The considered hydrodynamic system can be character-
ized by eight parameters: the physical properties of the
liquid, ρ, µ and γ, the geometrical parameters, R and H,
the bubble formation characteristics, De and T , and the
gravitational acceleration, g. The gas density and viscos-
ity have been neglected, as the bubble pressure is atmo-
spheric. Using dimensional analysis, one can construct five
dimensionless groups from these parameters:

Bo =
ρgD2

e

γ
, Oh =

√

µ2

ργDe
, Ω =

ρD2
e

µT
,

r1 =
H

De
and r2 =

R

De
. (1)

The Bond number Bo is the square ratio of the bubble
size De to the capillary length (γ/ρg)1/2. For the present
experiments, the capillary length is 1.5mm and the num-
ber Bo ranges from 7.2 to 26. The Ohnesorge number Oh
is the square root ratio of the viscous length scale µ2/ργ
to the bubble size. The value of this viscous length scale is
0.06mm for the least viscous oil (0.033Pa s) and 0.49mm
for the most viscous one (0.097Pa s). The range of Oh is
0.11 ≤ Oh ≤ 0.27. The dimensionless frequency Ω can
also be regarded as a square ratio of the bubble size to
the diffusive length scale (µT/ρ)1/2. When pattern forma-
tion is observed at the surface, the latter length scale is
typically 1.3mm in the least viscous oil and 2.5mm in the
most viscous one. Ω lies between 7 and 19. The other two
groups represent the confinement effects of the container.
These were kept large (10 � r1 � 20 and 8 � r2 � 17)
for weak confinement. Their possible influence on pattern
formation (e.g., through global circulating flow in the con-
tainer) is beyond the scope of the present paper and may
be examined in a future publication. In the present work,
the divergence angle ψ is given by a functional equation:
ψ = F(Bo,Oh,Ω).

3.3 Patterns

At small flow rates Q of gas injection, the advecting liquid
flow is weak so that the capillary attraction between bub-
bles at the surface influence their behavior strongly. They
are clustered or, with a relatively large Q, aligned on a
radius. When the flow rate is larger than a certain value,
bubbles are emitted horizontally from the emergence point
one by one in alternate directions (ψ = π) and the pattern



H.N. Yoshikawa et al.: Pattern formation in bubbles emerging periodically from a liquid free surface 15

exhibits two straight arms (see fig. 1(a)). This pattern has
a central and two mirror symmetries and is analogous to
the alternate mode in phyllotaxis. In each arm, bubbles
are first in contact with each other due to the capillary
force between them. The radial surface flow is not strong
enough to overcome this attraction. Further increase of Q
separates the bubbles in each arm by stronger advection
flow, while the pattern remains the same (ψ = π).

When Q is increased above a certain threshold, the
divergence angle ψ departs from π and the mirror sym-
metries are broken. Spiral patterns start to be seen. First,
two rotating arms are formed as shown in fig. 1(b). To
the observer’s eye, these appear to rotate, while the mo-
tion of each bubble is purely radial. The orientation of
the two arms is randomly chosen: it may change after a
strong external perturbation such as a shock given to the
container.

The divergence angle decreases with increasing Q and
a variety of spiral patterns are formed at the surface. The
series of pictures (b)-(i) in fig. 1 show patterns obtained by
increasing the flow rate Q in a given liquid with a given
orifice (H = 78mm, d = 1.4mm, µ = 0.072Pa s). At
higher values of Q, the arms appear to rotate at a higher
rate and more than two arms (nine, seven, five, eight, . . .
or even more) start to be visible, as seen in fig. 1. In some
cases, the visible arms are fixed and the pattern seems
to be star-like ((d), (g) and (h) in fig. 1). All the ob-
served patterns are robust. Even though a strong external
perturbation can break a pattern, the system restores it
rapidly. Further increase of Q leads to bubble emergence
at the liquid surface with two different intervals. Bubbles
emerge alternately at one of these two time intervals after
the preceding one. This is a consequence of an instability
in bubble chains [17], leading to bubble pairing and period
doubling behavior. Patterns formed by paired bubbles are
beyond the scope of the present paper and will not be
considered hereafter.

The divergence angles measured for different oils are
presented in fig. 5(a) and (b). Their behavior with in-
creasing Ω is shown in fig. 5(a). A bifurcation from the
alternate (ψ = π) to spiral (ψ = π) modes is found at
different critical values of Ω = Ωcr for different oils. This
bifurcation is discussed in detail in sect. 4.1. In fig. 5(b),
the results of the same measurements are plotted in the
Ω-Oh plane, where the divergence angles are shown by
iso-value curves. Groups of experimental points around a
constant value of Oh are obtained by experiments with the
same oil. On this diagram, one can see parameter values
yielding spiral patterns on the surface. The shaded regions
in the diagram correspond to the region where patterns in
the alternate mode were observed and the region of bub-
ble emergence with two intervals. As discussed in sect. 3.2,
the divergence angle ψ depends also on the Bond number
Bo. The Bo dependence can be found from the present
diagram by noting that the product BoOh4(= gµ2/ργ3)
acquires a constant value for a given liquid. This product
is identical to the Haberman-Morton number and takes
a value of 0.0016, 0.0061, 0.031 and 0.097 for the oil of
0.033, 0.048, 0.072 and 0.097Pa s, respectively.
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(a) Normalized divergence angles showing a bifurca-
tion from an alternate pattern (ψ = π)
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Fig. 5. Divergence angle dependence on the control parame-
ters. In (a), curves in bold lines are the least-square fits in the
form of eq. (2). The error bars represent standard deviations
from the averaged values. Experimental parameters (d, H) in
mm are: (0.8, 87) for the oil of 0.033 Pa s; (0.8, 94) and (1.2, 119)
for 0.048 Pa s; (1.4, 78) and (1.4, 86) for 0.072 Pa s; (1.2, 78) for
0.097 Pa s.

It is seen that, as the frequency increases for a given
liquid, the divergence angle decreases until the onset of
period doubling at a certain Ω. For a larger value of Oh,
this critical value of Ω becomes smaller and the range of
Ω for spiral patterns becomes smaller. This may suggest
that with a sufficiently large viscosity (i.e., a large Oh) no
spiral pattern might be observed. Indeed, in preliminary
experiments, we did not succeed in forming any patterns
with an oil of 0.17Pa s. On the other hand, in an oil of
small viscosity, the rising path of released bubbles was
destabilized and zigzag or helical paths were observed [18].
The emerged bubbles did not form any regular patterns
any more. Hence, the pattern formation concerns a limited
region of the parameter plane.
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4 Discussion

4.1 Bifurcation from the alternate mode

The generation of different patterns is related to differ-
ent values of the divergence angle ψ. In particular, its
departure from the constant value π reflects bifurcation
from the alternate to spiral modes accompanied by break-
ing symmetry. As seen in fig. 5(a), below a critical value
Ωcr, the divergence angle is equal to π, corresponding to
the alternate mode. Above Ωcr, the order parameter ψ
decreases. In the experiments, no hysteresis was observed
in proximity of the bifurcation point, within the accuracy
of the measurements. The experimental data group well
around the expected fits for a supercritical bifurcation,
as shown by the bold line curves in the figure. For ex-
periments with the oil of 0.048Pa s, no fit was determined
because the experimental conditions are farther away from
the bifurcation point. The fits shown in the figure are

ψ

2π
= 0.5 − α

(

Ω

Ωcr

− 1

)0.5

, (2)

where α and Ωcr are fitting parameters. Their values are
(α,Ωcr) = (0.236, 13.2), (0.273, 10.0) and (0.275, 7.02) for
the experiments with the oil of 0.033, 0.072 and 0.097Pa s,
respectively. The parameters α and Ωcr, respectively in-
crease and decrease as the liquid viscosity increases. The
dependence of the parameters α and Ωcr on the dimen-
sionless groups Oh and Bo will be examined in a future
publication.

4.2 Relation with phyllotaxis

For a given surface image with bubbles moving radially,
the divergence angle ψ is determined unambiguously. Nev-
ertheless, there is no intuitive relation between a value of
ψ and a pattern, as noted by Bravais [3,4]. The observer’s
eyes are attracted at first sight by a number of rotating
or fixed arms formed by bubbles and recognize a pattern.
These arms are what Bravais called conspicuous and are
only apparent features of the patterns.

As noted by Shimper [3], a divergence angle can often
be related to an irreducible rational fraction as ψ = n

m ·2π.
The denominator m corresponds to the number of fixed
arms and equals the number of successive bubbles neces-
sary to recover the same emission direction: the (m+1)-th
bubble is emitted in the same direction as the first emit-
ted bubble. The numerator n is what Bravais called the
encyclic number and is associated with the total angu-
lar rotation during the emission of m successive bubbles:
θj+m − θj = 2πn (see fig. 3). Figure 1(d), showing a pat-
tern of seven fixed arms, for example, is formed with a
divergence angle of 0.4275 · 2π rad (= 153.9◦). This angle
can be associated with a rational fraction 3

7
(= 0.4286). A

pattern of rotating arms can also be associated to a ratio-
nal divergence angle. Recognition of rotating arms instead
of fixed arms comes from the fact that the deduced m

is too large with respect to the number of bubbles mov-
ing simultaneously on the surface. They are not numer-
ous enough to reveal the hidden fixed star. In fig. 1(b),
the measured ψ value equals 0.46167 · 2π rad (= 166.2◦)
and the nearest relevant fraction is 6

13
(= 0.46154). This

implies that thirteen fixed arms will be exhibited by the
emission with this divergence angle, if enough bubbles co-
exist on the surface. However, the observer links sponta-
neously emitted bubbles in each double period 2T and
considers the pattern as one of the rational fraction 1

2
in

rotation. This recognition of the pattern is associated with
the fact that in the continuous fraction writing of the di-
vergence angle, the rational approximation preceding 6

13

is 1

2
: 0.46167 = 1/(2 + 1/(6 + 1/ · · ·)). The error coming

from the worse approximation by 1

2
is what makes the two

arms rotate.
These observations demonstrate experimentally Bra-

vais’s mathematical point: the observed pattern depends
on two parameters, not only on the divergence angle ψ
(as Shimper assumed), but also on the radial distance
∆r between two successive elements. If they are far apart
from each other, the pattern corresponding to the relevant
rational fraction is not observed. Instead, the pattern of
the previous approximation in the continuous fraction is
recognized. For the pattern generated by a given diver-
gence angle ψ, one can see a successive number of arms
by changing the radial distance of the elements. These
patterns correspond to the successive rational approxi-
mations in the continuous fraction for ψ. Bravais also
showed that all the elements of the Fibonacci sequence
{1, 1, 2, 3, 5, 8, 13 . . .} are observed by varying the radial
distance if, and only if, the divergence corresponds to the
golden mean ψ = ψG ≈ 0.764π. In the present exper-
iments, the divergence ψ varies continuously from π to
0.72π with varying Q and does not remain around ψG.
Consequently, patterns with the number of arms m not
included in the Fibonacci sequence are observed, e.g., such
as the seven and nine arms shown in fig. 1(c), (d) and (e).

To understand the continuous variation of ψ and its
relation to patterns, one has to come back to the work
of van Iterson and followers [3,7,15,19,20]. For patterns
constituted by elements with a finite size (like bubbles in
the present study) and not by mathematical points (like in
Bravais’s work), the packing and contacts between the el-
ements are important in pattern determination. Elements
in contact constitute parastichies, which are characterized
by the numbers of right and left parastichies m1 and m2.
For a given pair (m1,m2), van Iterson computed geometri-
cally possible values of the divergence and the separation.
The latter values are, for example, related by the following
equation for elements packed on the surface of a cylinder
(see eq. (4a) in [15]):

(m2
1 − m2

2)Π
2 =

(

m2

ψ

2π
− p

)2

−
(

m1

ψ

2π
− q

)2

, (3)

where Π is the normalized separation defined by Π =
∆r/C (C is the size of the packing domain, i.e., the cir-
cumference of the cylinder). This parameter reflects the
importance of packing: the smaller Π is, the more packed
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Fig. 6. van Iterson diagram with experimental data obtained
with the silicone oil of 0.033 Pa s. Full circles are the data of
the experiments shown in fig. 1.

the elements are. The other parameters in (3), q and p, are
the closest integers to m1ψ/2π and m2ψ/2π, respectively.
These are the encyclic numbers introduced by Bravais.
Equation (3) gives a tree of successive bifurcations in the
divergence-separation plane, each branch being character-
ized by a pair of parastichy numbers (m1,m2). This van
Iterson diagram is shown in fig. 6. In the figure, some of
the simple rational fractions n

m are shown on the ordinate
axis. If the divergence angle is around one of these values,
the number of arms recognized in a small physical system
is expected to equal its denominator m. In the diagram,
as Π decreases, a symmetry breaking bifurcation corre-
sponding to the transition from the opposite deposition
(m1,m2) = (1, 1) to the spiral pattern (1, 2) is first ob-
served. The divergence ψ decreases on the branch (1, 2)
until the point Π ≈ 0.12 where the second bifurcation
occurs. One of the two branches (1, 3) and (2, 3) follows
when Π decreases further. Another bifurcation occurs at
the end of each branch.

In the present experiments, the control parameter af-
fecting the packing is the bubble formation frequency Ω.
As the frequency increases, the number of bubbles inter-
acting in the deformed surface zone increases from two to
three, as seen in e.g., fig. 4. Hence, if the present pattern
formation has a phyllotactic character, the experimental
data will follow the van Iterson diagram with a decreas-
ing Π when Ω increases. In fig. 6, the experimental points
reported in fig. 5(a) for the oil of 0.033Pa s are plotted
after transforming the frequency Ω to the separation Π
through the relation Π = 0.692 − 0.0316Ω. This linear
transformation was determined by the least-square proce-
dure so that the experimental data group the best around
branches of the van Iterson diagram. It is seen that all
the points are on the branch (1, 2) and the observed first
symmetry breaking bifurcation corresponds to the tran-
sition from branch (1, 1) to branch (1, 2). As mentioned
earlier, the patterns with ψ = π coincide with the inter-

action between two bubbles at the surface (see fig. 4(a)).
Those with ψ < π are observed when three bubbles in-
teract with each other (see fig. 4(b)). In the iterated pro-
cess considered by Douady and Couder, an increase in
the number of effectively interacting elements (ferrofluid
drops) is also noticed at the bifurcation from the alternate
mode [11,12]. This similarity further suggests that bubbles
create real phyllotactic patterns of self-packing elements
and not “spiral printings” which are yielded by succes-
sive depositions of elements with a divergence angle fixed
from outside (like the spiraling of a fluid [16]). The ob-
served bifurcation in the present experiments shows that
the divergence is fixed through the interactions between
emerging bubbles.

5 Conclusion

Patterns formed by centimeter scale bubbles emerging
periodically at a liquid surface were examined with the
intention of studying the analogy to phyllotaxis. Differ-
ent conspicuous patterns were observed in these experi-
ments. Measurement of the divergence angle ψ revealed
the first symmetry breaking bifurcation corresponding
to the alternate-spiral transition of the van Iterson dia-
gram. This suggests that the observed patterns are formed
through the packing mechanisms of the elements (bub-
bles), which is similar to phyllotaxis. Further character-
ization of the system by measuring the bubble-induced
advection flows and observing in detail the packing of bub-
bles at the emergence point is being performed and will
be reported in future publications.
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