
IOP PUBLISHING EUROPEAN JOURNAL OF PHYSICS

Eur. J. Phys. 28 (2007) L7–L9 doi:10.1088/0143-0807/28/3/N01

LETTERS AND COMMENTS

Bead, hoop and spring . . . : some
theoretical remarks

Germain Rousseaux
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Abstract
Here, we solve a simplified version (corresponding to oscillations with small
amplitudes) of the nonlinear equation describing the evolution of the bead,
hoop and spring problem derived by Ochoa and Clavijo (2006 Eur. J. Phys.
27 1277–88) with the so-called amplitude equation method. We point out
the analogy with the equation derived by us previously in Rousseaux et al
(2005 Eur. J. Phys. 26 1065–78) and which describes the nonlinear dynamics
of a conical pendulum. Our comment illustrates the usefulness of nonlinear
techniques for teachers, such as the amplitude equation formalism, since these
can be applied to all nonlinear oscillators.

In [1], the authors have studied a mechanical system made of two beads of mass m linked by
a spring which is bound to slide on a horizontal loop of radius R. The latter is put into rotation
with pulsation ω around a horizontal axis denoted by z. The centrifugal force tends to extend
the distance between the beads, whereas the elasticity of the spring k counteracts this effect.
Each variation of the distance 2r between both beads whose initial value is 2r0 translates into a
changing position of the centre of mass of the two beads along the horizontal axis. Obviously,
there are two geometrical constraints r0 < R and r = ±√

R2 − z2.
Ochoa and Clavijo have derived the Lagrangian of the system [1]:

L = m(ṙ2 + r2φ̇2 + ż2) − 2k(r − r0)
2. (1)

Then, using the Euler–Lagrange equation

d

dt

(
∂L

∂ż

)
− ∂L

∂z
= 0, (2)

they ended up with the following equation of motion:

z̈ +

(
z

R2 − z2

)
ż2 +

(
2k

mR2
− ω2

R2

)
z3 +

2kr0

mR2
z
√

R2 − z2 −
(

2k

m
− ω2

)
z = 0, (3)
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and they commented on its form being ‘quite complex to solve’. The purpose of this comment
is to display its solutions corresponding to oscillations. Moreover, we point out the similarity
with the equation that we derived in [2] which describes the evolution of a conical pendulum.

Our derivation is a pedagogic example of the way to deal with nonlinear oscillators which
are ubiquitous in lectures on classical mechanics. We introduce the techniques of the so-called
amplitude equation which can be seen as the nonlinear generalization of the normal modes
approach for a linear oscillator.

We use dimensionless variables z = Z × R and suppose for the moment that ω2 > 2k
m

,
otherwise the equation will not have the same form (with a positive sign in front of Z) as the
one for a simple oscillator: Z̈ +

(
ω2 − 2k

m

)
Z = other terms.

Let us denote ω2
0 = ω2 − 2k

m
. The evolution equation becomes

Z̈ +

(
Z

1 − Z2

)
Ż2 − ω2

0Z
3 +

2kr0

mR
Z

√
1 − Z2 + ω2

0Z = 0. (4)

Now, we assume that the displacements are small, Z � 1, and we introduce ω2
1 = 2kr0

mR
to get

Z̈ +
(
ω2

0 + ω2
1

)
Z −

(
ω2

0 +
ω2

1

2

)
Z3 + ZŻ2 � 0. (5)

Ochoa and Clavijo have introduced a peculiar pulsation ωc such that ω2
c = 2k

m

(
1 − r0

R

)
and

which allows us to interpret the bead, hoop and spring problem as a critical phenomenon in
analogy with statistical mechanics [1].

We introduce additional parameters a and b in order to simplify the resolution (a2 =
ω2

0 + ω2
1 = ω2 − ω2

c and b2 = ω2
0 + ω2

1
2 ):

Z̈ + a2Z − b2Z3 + ZŻ2 = 0. (6)

At this stage, we can relax the stronger constraint ω2 > 2k
m

for a weaker one which will still
correspond to oscillations. a2 > 0 implies ω2 > 2k

m

(
1 − r0

R

) = ω2
c : we do recover the critical

pulsation of Ochoa and Clavijo.
With τ = at (∂τ = ′) and 0 < α = b2

a2 , the equation of motion takes the simplest form

Z′′ + Z − αZ3 + ZZ′2 = 0. (7)

In [2], we derived the equation of motion for a vertical conical pendulum whose projections
in a horizontal plane (X, Y ) are described with the complex variable W = X + iY :

W ′′ + W − 1
2 |W |2W + W |W ′|2 = 0. (8)

Here, |W |2 = WW where the bar denotes the complex conjugate (c.c.).
The cubic term without the time derivative comes from the nonlinearity associated with

the motion of the pendulum on the peculiar geometry of the sphere, whereas the other cubic
term with the time derivative stands for the centrifugal force effect.

We now use the same method based on the formalism of the so-called amplitude equation
as in [2] with Z = A eiτ + c.c. (let us recall that Z is real, A is complex and varies slowly with
time), and we find the usual form corresponding to a nonlinear oscillator:

A′ = 1 − 3α

2
i|A|2A. (9)

Indeed, for slow changes of the amplitude with time (A′ � A), we have used the
approximation

Z′ � i(A exp(iτ) − A exp(−iτ)) (10)
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in order to get

Z′′ + Z � 2i(A′ exp(iτ) − A′ exp(−iτ)), (11)

where the slowly varying envelope approximation was introduced: A′′ � A′.
ZZ′2 = |A|2A eiτ + c.c. is the contribution of the centrifugal force where we kept only

the resonant term oscillating like eiτ : one says that the harmonics were ‘time averaged’ with
respect to this so-called secular term. The cubic term was treated accordingly: we kept
only the resonant term in its development, A3 exp(3iτ) + 3A2A exp(iτ) + 3AA2 exp(−iτ) +
A3 exp(−3iτ). A Poincaré–Lindstedt expansion or the normal form theory would have led to
the same equation [3].

Now, we can compare our result with the amplitude equation for the simplest nonlinear
pendulum [2, 3]:

A′ = − i

4
|A|2A. (12)

Both feature invariance by rotation in the complex plane which is associated with the translation
in time: A → A eiφ . Moreover, the energy is conserved as ∂τ (|A|2) = 0: Ochoa and Clavijo
have illustrated this last point in their figure 8 where they plotted in fact the phase space of a
nonlinear oscillator whose period depends on the initial amplitude [1].

We would like to point out that, depending on the value of α, the nonlinearity of the
pendulum of Ochoa and Clavijo can be positive (1/3 > α), negative (1/3 < α) or null
(1/3 = α) compared to the usual nonlinear pendulum whose period increases with the
amplitude as the coefficient of |A|2A is negative (−1/4 < 0).

As a final remark, the amplitude equation we derived can be seen as the analogue of
the so-called Landau equation in statistical physics and it underlines in the clearest manner
the analogy pointed out by Ochoa and Clavijo [1] between the mechanical problem we have
treated and a critical phenomenon: the Lagrangian plays the role of a free energy ‘à la Landau’
which is minimized in order to get the Landau equation. We hope that both students and
teachers of physics will find the analogy useful for tackling other phase transitions from the
mechanical point of view and conversely as discussed, for example, in [4].
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