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Abstract
We discuss an article by Le Bellac and Lévy-Leblond in which they have
identified two Galilean limits of electromagnetism (1973 Nuovo Cimento B 14
217–33). We use their results to point out some confusion in the literature,
and in the teaching of special relativity and electromagnetism. For instance,
it is not widely recognized that there exist two well-defined non-relativistic
limits, so that researchers and teachers are likely to utilize an incoherent
mixture of both. Recent works have shed new light on the choice of gauge
conditions in classical electromagnetism. We retrieve the results of Le Bellac
and Lévy-Leblond first by examining orders of magnitudes and then with a
Lorentz-like manifestly covariant approach to Galilean covariance based on
a five-dimensional Minkowski manifold. We emphasize the Riemann–Lorenz
approach based on the vector and scalar potentials as opposed to the Heaviside–
Hertz formulation in terms of electromagnetic fields.

1. Introduction

Although special relativity has superseded Galilean relativity as an appropriate framework
to describe high-energy phenomena, there exists a wealth of low-energy systems, such as in
condensed matter physics and low-energy nuclear physics, where the usefulness of Galilean
covariance should be better understood and appreciated. The main purpose of this paper is
to emphasize the relevance of Galilean covariance nowadays, nearly 100 years after Lorentz,
Poincaré and Einstein developed a theory that turned into special relativity, in order to mend the
(at times) apparent incompatibility between Galilean mechanics and the full set of Maxwell
equations [2]. The title is reminiscent of Einstein’s famous paper [3] because we wish to
point out that, had the existence and structure of two Galilean limits of electromagnetism
been properly recognized at the end of the nineteenth century, some phenomena could have
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been understood without now referring to them as ‘relativistic phenomena’ (the very concept
of spin is an example [4]). Indeed, almost 70 years after Einstein’s article, Le Bellac and
Lévy-Leblond (LBLL) observed that there exist not only one, but two well-defined Galilean
(that is, non-relativistic) limits of electromagnetism: the so-called magnetic and electric
limits [1].

We wish to point out hereafter some confusion, in the research literature and in
physics education, which results from an incoherent mixture of the two Galilean limits of
electromagnetism. This follows from inaccurate definitions of non-relativistic covariance,
which is why we emphasize at once that the definition of Galilean covariance employed
henceforth in this paper rests on its compatibility with the Galilean transformations of
spacetime (equation (6)). Examples of such misleading, though well known, text presentations
are mentioned in [1], and there have been more since then. The fact that one should be careful
when dealing with electrodynamics at low velocities has been illustrated, for instance, in [5].
Let us illustrate this point with a simple example. Under a Lorentz transformation with relative
velocity v, the electric and magnetic fields, in vacuum, become

E′ = γ (E + v × B) + (1 − γ )
v(v · E)

v2
,

B′ = γ

(
B − 1

c2
v × E

)
+ (1 − γ )

v(v · B)

v2
,

(1)

respectively. The fact that Galilean covariance is a much more subtle concept than simply
taking the v � c, or γ � 1, limit is illustrated by the fact that equation (1) then becomes

E′ = E + v × B, B′ = B − 1

c2
v × E, (2)

which not only is incompatible with Galilean relativity, but does not even satisfy the
composition properties of transformation groups [1, 5]. That is to say, a sequence of such
transformations does not have the same form as above.

We have organized this paper as follows. In section 2, we recall the main results of
LBLL [1]. In section 3, we obtain these results using two arguments: one based on orders of
magnitudes and a recent covariant approach with which the Galilean spacetime is embedded
into a five-dimensional space. The purpose of this second approach is to allow the use
of relativistic methods to solve non-relativistic problems. Likewise, the tensor methods
introduced in the teaching of special relativity may now be applied in a Galilean context.
Indeed, the calculations in section 3.2 should be accessible to many advanced undergraduate
physics students. Throughout the paper, we favour the Riemann–Lorenz formulation of
electrodynamics, based on the scalar and vector potentials, over the Heaviside–Hertz approach
which involves electromagnetic fields 4. Discussion and applications are in section 4.

2. Galilean electromagnetism

The purpose of LBLL was to write the laws of electromagnetism in a form compatible with
Galilean covariance rather than Lorentz covariance. As LBLL put it, such laws could have
been devised by a physicist in the mid-nineteenth century [1]. Here, let us retrieve these laws

4 In this paper, we emphasize the Riemann–Lorenz approach to electromagnetism. Therein the central role is played
by the vector and scalar potentials, unlike the Heaviside–Hertz approach, which rather relies on the fields themselves.
For a justification, see [13].
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from relativistic kinematics. The Lorentz transformation of a 4-vector (u0, u), where the four
components have the same units, is given by (see, e.g., chapter 7 of [6])

u′ 0 = γ

(
u0 − 1

c
v · u

)
, u′ = u − γ

v
c
u0 + (γ − 1)

v
v2

v · u, (3)

where γ ≡ 1√
1−v2/c2

, with a relative velocity v. The speed of light in the vacuum is denoted

by c. LBLL were the first to observe that this transformation admits two well-defined Galilean
limits [1]. One limit is for timelike vectors:

u′ 0 = u0, u′ = u − 1

c
vu0, (4)

which, as we shall see, may be related to the so-called electric limit. The second limit is for
spacelike vectors:

u′ 0 = u0 − 1

c
v · u, u′ = u, (5)

and will be associated with the magnetic limit. As it is well known, the spacetime coordinates
can be described by timelike vectors only. Indeed, equation (4) has the form of Galilean
inertial spacetime transformations:

x′ = x − vt, t ′ = t. (6)

Nevertheless, other vectors, such as the 4-potential and 4-current, may transform as one or
other of the two limits.

An example of the subtlety of non-relativistic kinematical covariance is that it is quite
common to neglect to enforce the condition that a non-relativistic limit involves not only
low-velocity phenomena, but also large timelike intervals so one obtains different kinematics,
referred to as Carroll kinematics [7]. In other terms, a Galilean world is one within which
units of time are naturally much larger than units of space. The existence of events physically
connected by large spacelike intervals would imply loss of causality, among other things.
Other such kinematics, each one being some limit of the de Sitter kinematics, have been
classified in [8].

The situation is similar to electric and magnetic fields. One needs to compare the module
of the electric field E to c times the module of the magnetic field, i.e. cB. When the magnetic
field is dominant, equation (1) reduces to a transformation referred to as the magnetic limit of
electromagnetism:

E′
m = Em + v × Bm, Em � cBm,

B′
m = Bm.

(7)

The other alternative, where the electric field is dominant, leads to the electric limit:

E′
e = Ee, Ee � cBe,

B′
e = Be − 1

c2
v × Ee.

(8)

Indeed, the approximations Ee/c � Be and v � c together imply that Ee/v � Ee/c � Be so
that we take Ee � vBe in equation (1). Such an analysis of orders of magnitude is described
in the following section.

From the Galilean transformations of spacetime, equation (6), we find

∇′ = ∇, ∂t ′ = ∂t + v · ∇. (9)
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The fields’ transformations in the magnetic limit of equation (7) are clearly compatible with
the use of equation (9) together with the transformations of the 4-potential (V , A):

V ′
m = Vm − v · Am, A′

m = Am, (10)

(note the similarity with equation (5)) where

Em = −∇Vm − ∂tAm, Bm = ∇ × Am. (11)

Similarly, the electric limit of equation (8) may be obtained from equation (9) and the
transformations of the 4-potential:

V ′
e = Ve, A′

e = Ae − v
c2

Ve. (12)

This equation is similar to equation (4). Now, however, that the fields are related to the
4-potential by

Ee = −∇Ve, Be = ∇ × Ae. (13)

In parallel with the two possible sets of transformations of the 4-potential, there are two
ways to transform the 4-current (ρ, j). In the magnetic limit, it transforms as equation (5),

ρ ′
m = ρm − 1

c2
v · jm, j′m = jm, (14)

and the continuity equation then reads

∇ · jm = 0. (15)

The appearance of an ‘effective’ charge density ρ ′
m = ρm − 1

c2 v · jm is certainly one of
the salient features of the magnetic limit. We will refer the interested reader to the works in
[9], which discuss the effect of this effective charge without pointing out its Galilean origin
for most of them.

For the electric limit, it transforms as equation (4),

ρ ′
e = ρe, j′e = je − vρe, (16)

and the continuity equation has its usual form

∇ · je + ∂tρe = 0. (17)

Finally, Maxwell’s equations,
∇ × E = −∂tB, Faraday,

∇ · B = 0, Thomson,

∇ × B = µ0j +
1

c2
∂tE, Ampère,

∇ · E = 1

ε0
ρ, Gauss,

(18)

reduce, in the Galilean limits, to two respective forms. As the field transformation laws (1)
themselves, this fact is not so obvious if one naively takes the limit c → ∞. In the following
section, we present an argument based on dimensional analysis and orders of magnitude. In
[1], it was found that, in the electric limit, the Maxwell equations reduce to

∇ × Ee = 0, ∇ · Be = 0,

∇ × Be − 1

c2
∂tEe = µ0je, ∇ · Ee = 1

ε0
ρe.

(19)

Clearly, the main difference to the relativistic Maxwell equations is that here the electric field
has zero curl in Faraday’s law. In the magnetic limit, the Maxwell equations become

∇ × Em = −∂tBm, ∇ · Bm = 0,

∇ × Bm = µ0jm, ∇ · Em = 1

ε0
ρm.

(20)

The displacement current term is absent in Ampère’s law.
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3. Recent analyses

3.1. Orders of magnitude

Many errors occur within low-velocity limits of relativistic theories when one naively replaces
some quantities with zero, rather than carefully comparing various orders of magnitudes
involved in the equations. As we shall show hereafter, we do not require sophisticated
mathematical tools to retrieve the two Galilean limits of electromagnetism of LBLL. As
discussed by one of us in [10], a careful dimensional analysis of the fields’ equations is
sufficient for this purpose. Therein, it is argued that the electric and magnetic limits may be
retrieved by a careful consideration of the order of magnitude of the dimensionless parameters,

ε ≡ L

cT
and ξ ≡ j

cρ
, (21)

where L, T , j and ρ represent the orders of magnitude of length, time, current density and
charge density, respectively. The Galilean kinematics considered hereafter corresponds to the
quasistatic limit ε � 1.

The electric or magnetic character of the Galilean limits of electromagnetism is determined
by the behaviour of the parameter ξ . From Gauss’s law and Ampère’s law, equation (18), we
find cB

E
� j

ρc
, so that

cB

E
= ξ.

Using this result and equations (7), (8), we find

ξ � 1: magnetic limit,
ξ � 1: electric limit.

(22)

Returning to equation (21), we see that the magnetic limit corresponds to the approximation
j � cρ, that is, the spacelike component is larger than the timelike component. This echoes the
transformation in equation (5). Conversely, the electric limit corresponds to the approximation
cρ � j , so that the spacelike component now is much larger than the timelike component.
This is analogous to equation (4).

From the Maxwell displacement current term in Ampère’s law, equation (18), we find

B � vE

c2
, (23)

where v denotes the ratio of orders of magnitude L/T . Similarly, the magnetic induction term
of Faraday’s law gives

E � vB. (24)

If we substitute this result into equation (23), we find that the displacement current term and
the full Faraday law are compatible only if v � c, that is, in the Lorentz covariant regime.
However, equation (23) cannot be obtained if we drop ∂tE from Ampère’s law, so that it is
compatible with the first and third equations of (19), i.e. in the electric limit. On the other
hand, equation (24) is compatible with the first and third equations of (20), i.e. the magnetic
limit, because it does not appear if we drop the magnetic induction term ∂tB of Faraday’s law
in line three of equation (18).

Following the lines of reasoning of [11–15], we use the Riemann–Lorenz formulation of
electromagnetism, which relies on the potentials as the basic quantities, in order to retrieve the
two Galilean limits. This is in opposition to the Heaviside–Hertz formulation, which is based
on the magnetic and electric fields [11–13]. In terms of potentials, the equations of classical
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electromagnetism read

∇2V − 1

c2

∂2V

∂t2
= − ρ

ε0
, Riemann equations,

∇2A − 1

c2

∂2A
∂t2

= −µ0j,

(25)

∇ · A +
1

c2

∂V

∂t
= 0, Lorenz equation, (26)

d

dt
(mv + qA) = −q∇(V − v · A), Lorentz force. (27)

The quasistatic approximation, ε � 1, of equation (25) reads

∇2V � − ρ

ε0
and ∇2A � −µ0j, (28)

from which we can define a further dimensionless ratio, cA
V

� j

ρc
, so that

cA

V
� ξ. (29)

Once again, this echoes our comment following equation (22): in the magnetic limit, the
spacelike quantity cA is dominant, whereas in the electric limit, it is the timelike quantity V

which dominates.
If we compare the two terms of the Lorenz (not Lorentz [14]) gauge condition,

equation (26), we find

|∇ · A|
∂tV/c2

� cT

L

cA

V
� ξ

ε
. (30)

In the quasistatic regime, ε � 1, we find therefore two possibilities. If ξ � 1, like ε, we are
in the electric limit, and the gauge condition is similar to the Lorenz condition:

∇ · Ae +
1

c2
∂tVe = 0. (31)

On the other hand, in the magnetic limit, ξ � 1, we drop ∂tV , so that we obtain the Coulomb
gauge condition:

∇ · Am = 0. (32)

Let us use the orders of magnitude for the 4-potential components and obtain thereof
their Galilean transformations in the magnetic limit, equation (10), and the electric limit,
equation (12). From equation (3) with u0 = V/c and u = A, we find that the scalar potential
V and the vector potential A transform, under a Lorentz transformation, as

V ′ = γ (V − v · A), A′ = A − γ
v
c2

V + (γ − 1)
v
v2

v · A. (33)

From the first equation, we have V � vA, so that we obtain, from equation (29),

ξ = cA

V
� cA

vA
= 1

ε
.

Therefore, in the quasistatic limit ε � 1, this equation gives ξ � 1, so that the first line is
compatible with the magnetic limit. Accordingly, this is incompatible with the electric limit,
for which ξ � 1, so that the term v · A must be dropped from the first line of equation (33) in
the electric limit.
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A similar argument, applied to the second equation of (33), implies that A � vV
c2 , so that

ξ = cA

V
� cvV

c2V
= v

c
= ε.

Unlike the previous case, the quasistatic limit leads to ξ � 1, which is compatible with the
electric limit only, equation (12). This implies that, in the magnetic limit, the term v

c2 V must
be dropped from the second line of equation (33), as is the case in equation (10).

If we use an entirely similar analysis for the Lorentz transformation of charge and current
densities, obtained from equation (3) with u0 = ρ and u = j/c,

ρ ′ = γ

(
ρ − 1

c2
v · j

)
, j′ = j − γ vρ + (γ − 1)

v
v2

v · j, (34)

we retrieve the Galilean transformations, equations (14) and (16), for the magnetic and electric
limits, respectively.

Let us conclude by briefly discussing the continuity equation:

∇ · j + ∂tρ = 0.

If we compare the two terms as we have done for the Lorentz gauge condition in
equation (30), we find

|∇ · j|
∂tρ

� cT

L

j

cρ
� ξ

ε
.

If ξ � 1, like ε in the quasistatic regime ε � 1, then we obtain the electric limit and we
retrieve equation (17). On the other hand, in the magnetic case, ξ � 1, so that we drop ∂tρ

and thereby obtain equation (15).

3.2. Reduction from (4,1) Minkowski spacetime

Hereafter, we briefly review a different approach to the Galilean gauge fields [16]. It involves
a formulation of Galilean invariance based on a reduction from a five-dimensional Minkowski
manifold to the Newtonian spacetime [17–19]. It may be of interest to physics teachers because
it relies on tensor calculus similar to the one utilized in the teaching of special relativity. We
also wish to bring to the attention of physics teachers an interesting advocacy by Kapuścik [19]
in favour of working with five dimensions. Therein, Kapuścik provides compelling arguments
based on concepts similar to those utilized in the teaching of special relativity, such as clocks,
rods, trains and mirrors. Then, the main difference between special relativity and Galilean
relativity is the absence, for the latter, of an invariant signal, thereby requiring a ‘control
parameter’ that keeps track of the reference frame. This parameter is related to the additional
coordinate.

The extended space is such that a Galilean boost with relative velocity v = (v1, v2, v3)

acts on a Galilei-vector (x, t, s) as

x′ = x − vt, t ′ = t, s ′ = s − v · x + 1
2 v2t. (35)

Since ∂s transforms like the mass m (see below for a justification), one can see the additional
coordinate s as being conjugate to the mass m since both are invariant under Galilean
transformations. The parameter s may be seen also as the action per unit mass. More
about classical and quantum physical interpretations of s is in [16–19].

The scalar product,

(A|B) = AµBµ ≡ A · B − A4B5 − A5B4,
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of two Galilei-vectors A and B is invariant under the transformation, equation (35). This
suggests a method to base the tensor calculus on the metric

gµν = gµν =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 −1
0 0 0 −1 0


 . (36)

Hereafter, we refer to this as the Galilean metric.
The transformation in equation (35) can be written in matrix form for the components of

any 5-vector as

x ′µ = �µνxν,

where µ denotes the row and ν the column (so that �µν is the (µν)-entry) or



x ′1

x ′2

x ′3

x ′4

x ′5


 =




1 0 0 −v1 0
0 1 0 −v2 0
0 0 1 −v3 0
0 0 0 1 0

−v1 −v2 −v3
1
2 v2 1







x1

x2

x3

x4

x5


 .

For a 5-oneform, this transformation reads

x ′
µ = �µνxν,

where µ now denotes the column and ν the row (that is �ν
µ is the (νµ)-entry) or

(
x ′

1, x
′
2, x

′
3, x

′
4, x

′
5

) = (x1, x2, x3, x4, x5)




1 0 0 v1 0
0 1 0 v2 0
0 0 1 v3 0
0 0 0 1 0
v1 v2 v3

1
2 v2 1


 . (37)

We write the embedding as

(x, t) → xµ = (x, t, s),

as well as the following 5-momentum:

pµ ≡ −i∂µ = (−i∇,−i∂t ,−i∂s),

so that, with the usual identification E = i∂t , and with m = i∂s , we obtain

pµ = (p,−E,−m), pµ = gµνpν = (p,m,E).

Thereupon the mass does not enter as an external parameter, but as a remnant of the fifth
component of the particle’s momentum. Hereafter, the 5-momentum operator will act on a
massless field so that

∂5A = ∂sA = 0.

Now let us set up the five-dimensional quantities that allow us to retrieve the two Galilean
limits of electromagnetism. They are given by defining two embeddings of the 5-potential:

Aµ = (A, A4, A5).
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Under the transformation in equation (35) its components transform, from equation (37), as

A′ = A + vA5,

A4′ = A4 + v · A + 1
2 v2A5,

A5′ = A5.

(38)

Next, we write the five-dimensional electromagnetic antisymmetric Faraday tensor:

Fµν ≡ ∂µAν − ∂νAµ =




0 b3 −b2 c1 d1

−b3 0 b1 c2 d2

b2 −b1 0 c3 d3

−c1 −c2 −c3 0 a

−d1 −d2 −d3 −a 0


 . (39)

Thus, we have

b = ∇ × A,

c = ∇A4 − ∂4A,

d = ∇A5 − ∂5A,

a = ∂4A5 − ∂5A4.

(40)

The 5-current,

jµ = (j, j4, j5),

transforms under the transformation, equation (35), as

j′ = j + vj5,

j4′ = j4 + v · j + 1
2 v2j5,

j5′ = j5.

(41)

The continuity equation takes the form

∂µjµ = ∇ · j − ∂4j5 − ∂5j4 = 0. (42)

The five-dimensional Lorenz-like condition takes a similar form:

∂µAµ = ∇ · A − ∂4A5 − ∂5A4 = 0. (43)

In the presence of sources, the Maxwell equations are

∂µFαβ + ∂αFβµ + ∂βFµα = 0, (44)

and

∂νF
µν = jµ, (45)

so that in terms of the components of F defined in equation (39), we find, from equation (44)

∇ · b = 0,

∇ × c + ∂4b = 0,

∇ × d + ∂5b = 0,

∇a − ∂4d + ∂5c = 0,

(46)

whereas equation (45) reduces to

∇ × b − ∂5c − ∂4d = j,

∇ · c − ∂4a = −j4,

∇ · d + ∂5a = −j5.

(47)
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From Fµ′ν ′ = �α
µ′�

β

ν ′Fαβ , the entries of F in equation (37) transform as

a′ = a + v · d,

b′ = b − v × d,

c′ = c + v × b + 1
2 v2d − av − v(v · d),

d′ = d.

(48)

Let us now see how the electric and magnetic limits are contained within the previous
formulae.

3.2.1. Electric limit As mentioned previously, the electric limit is characterized by 4-potential
and 4-current vectors which are timelike, that is, their time component is much larger than the
length of their spatial components. In the reduction approach, it corresponds to defining the
embedding of the potentials and currents as

(Ae, Ve) ↪→ Ae = (Ae, 0,−µ0ε0Ve), (49)

and

(je, ρe) ↪→ je = (µ0je, 0,−µ0ρe), (50)

respectively.
From equations (38) and (49) we retrieve equation (12). Similarly we obtain equation (16)

from equations (41) and (50). As for the continuity equation, equation (42), it becomes
equation (17). From the first line of equation (40), we come to the natural definition:

Be ≡ b = ∇ × Ae.

The electric field is defined as the component d, so that from the third line of equation (40) we
have Ee ≡ 1

µ0ε0
d = −∇Ve, as in equation (13). From equation (40), we note that c = −∂tAe

and a = − 1
µ0ε0

∂tVe. Then, equation (48) leads to equation (8). The corresponding Maxwell
equations, equation (19), are obtained from equations (46) and (47).

Note that the second line of equation (47) provides a condition similar to Lorenz gauge
fixing:

∇ · Ae = −µ0ε0∂tVe.

This expression may also be obtained by substituting equation (49) into equation (43).

3.2.2. Magnetic limit This non-relativistic limit is characterized by spacelike 4-potential
and 4-current vectors; their time component is small compared to the length of their spatial
components. Hereafter, we show that it corresponds to defining the embedding of the potentials
and currents as

(Am, Vm) ↪→ Am = (Am,−Vm, 0), (51)

and

(jm, ρm) ↪→ jm =
(

µ0jm,− 1

ε0
ρm, 0

)
(52)

respectively.
From equations (38) and (51), we retrieve equation (10). Similarly equations (41)

and (52) lead to equation (14), and the continuity equation (42) gives equation (15), which
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shows that the current jm cannot be related to a convective transport of charge! As above, we
define the magnetic field as Bm ≡ b = ∇ × Am and the electric field is now defined as the
component c, so that from the second line of equation (40) we obtain Em ≡ c = −∇Vm−∂tAm,
as in equation (11). Then equation (48) leads to equation (7). The Maxwell equations (20)
are obtained from equations (46) and (47). Finally, note that by replacing equation (51) in
equation (43), we obtain Coulomb’s gauge condition

∇ · Am = 0.

4. Some applications

Clearly, Galilean theories are limits of Maxwell’s theory. Our claim is not that Galilean
theories represent an alternative to special relativity in the low velocity regime, but that one
must be vigilant when taking low velocity limits in order to make sure that the ensuing
equations satisfy appropriate invariant properties. This is of the utmost importance nowadays
because of recent dramatic breakthroughs and intense research in condensed matter physics.
A consequence of Le Bellac and Lévy-Leblond’s work is that more physical systems could
have been described properly with the correct formulation of Galilean electromagnetism.

In a future work, we plan to collect some results about phenomena that could not
supposedly be explained by Galilean theories because the two (magnetic and electric) limits
were incoherently mixed. In this section, we provide some examples borrowed from fluid
dynamics and the physics of continuous media.

Within the context of Galilean covariance, magnetohydrodynamics (MHD) and
electrohydrodynamics (EHD) turn out to be two different sets of approximations of the
Maxwell equations where retardation (and, therefore, wave characteristics) has been neglected.
Indeed, effects that are important in MHD become marginal in EHD (such as the curl of the
electric field, as in equation (19)) and vice versa (e.g., the displacement current is negligible
in MHD (as in equation (20)). Melcher has greatly clarified these facts by disjoining
the electroquasistationary approximation used in EHD from the magnetoquasistationary
approximation of MHD [20]. From section 3.2 of Melcher and Haus [20], we see that
the underlying equations are precisely the same as the Galilean limits, equations (19)
and (20). Melcher’s main argument relies on the comparison of three characteristic time
scales (magnetic diffusion time, charge relaxation time and wave transit time). The third
one is the square root of the product of the two former time scales. As an example, in the
magnetic limit, the charge relaxation time scale is very small and the magnetic field does
have enough time to diffuse inside the Ohmic carrier. It is straightforward to see that the
electroquasistatic of Melcher corresponds to the electric limit whereas the magnetic limit is
just the magnetoquasistatic. Hence, a large amount of our technology is based on Galilean
electromagnetism as soon as waves are neglected.

Now, let us comment on the low-velocity electrodynamics of continuous media. We find
in some textbooks that a dielectric in motion is characterized by the presence of a motional
polarization given by

P′ = ε0χ(E + v × B), (53)

where χ is the dielectric susceptibility [21]. Lorentz utilized it in order to derive the Fresnel–
Fizeau formula at first order (see [22] and pp 174–6 of [21]). This formula can be misleading.
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Maxwell equations in continuous media are covariant under the Poincaré–Lorentz
transformations [23]:

∇ · B = 0,

∂tB = −∇ × E,

∇ · D = ρ,

∇ × H = j + ∂tD.

In continuous media, the constitutive equations relate the excitation D, the field E and the
polarization M:

D = ε0E + P, B = µ0H + M.

These relations are valid in both Galilean and Einsteinian relativity [23]. Let us examine the
electromagnetic laws when we take into account the motion of a medium at low velocity [20].

First, we recall that the Galilean transformation, equation (6), leads to equation (9) for
the differentiation operators. From this equation, together with the identity

∇ × (a × b) = (b · ∇)a − (a · ∇)b + a(∇ · b) − b(∇ · a),

we find
∂A′

∂t ′
= ∂A′

∂t
+ v(∇ · A′) − ∇ × (v × A′),

for any vector A. If we utilize these transformations with the two Galilean limits expressed for
a continuous medium, the Maxwell equations in a reference frame moving at velocity v read
from equation (9), these equations transform in such a way that we can deduce the following
field transformations.

The formula, equation (53), used by Lorentz is not compatible with Galilean relativity.
However, the electric field and the magnetic field which create the polarization in Fizeau
experiment come from a light wave, so that Lorentz was right to use this formula in order to
derive a first-order relativistic effect, even though there is no contradiction with the electric
limit formula P′ = P = ε0χE′ = ε0χE.

Magnetic limit Electric limit
∇′ × H′ = j′, ∇′ × E′ = 0,

∇′ · B′ = 0, ∇′ · D′ = ρ ′,

∇′ · j′ = 0, ∇′ · j′ +
∂ρ ′

∂t′
= 0,

∂t ′B′ = −∇′ × E′, ∇′ × H′ = j′ +
∂D′

∂t ′
.

B = B′, E = E′,
ρ = ρ ′,

j = j′, j = j′ + ρ ′v,

H = H′, H = H′ + v × D′,
E = E′ − v × B′, D = D′,
M = M′, P = P′,
P = P′ + v × M′/c2, M = M′ − v × P′.

We plan to return to these questions in more detail soon. We will also discuss other
applications, such as in superconductivity, the Schrödinger equation and Lévy-Leblond
equation with external fields, and the Trouton–Noble experiment, among others.
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électrique parallèlement un plan conducteur indéfini Ann. Fac. Sci. Toulouse, Sér. 2 4 5–44 Available at
http://archive.numdam.org/article/AFST 1902 2 4 5 0.pdf

[13] O’Rahilly A 1965 Electromagnetic Theory: A Critical Examination of Fundamentals (New York: Dover)
Su C C 2001 Explicit definitions of electric and magnetic fields in potentials and derivation of Maxwell’s

equations Eur. J. Phys. 22 L5–8
Yakubov V P 2004 Special theory of relativity in electrodynamics Russ. Phys. J. 47 726–38
Jefimenko O D 2004 Presenting electromagnetic theory in accordance with the principle of causality Eur. J.

Phys. 25 287–96
[14] Dutch physicist Hendrik Anton Lorentz is often credited for the gauge condition and the formulation, whereas

it is actually due to Danish physicist Ludvig Valentin Lorenz. For more details, see Jackson J D and
Okun L B 2001 Historical roots of gauge invariance Rev. Mod. Phys. 73 663–80

Keller O 2002 Optical works of L V Lorenz Progress in Optics XXXVII ed E Wolf (Amsterdam: North-Holland)
pp 257–343

http://dx.doi.org/10.1007/BF01646020
http://dx.doi.org/10.1119/1.16926
http://dx.doi.org/10.1119/1.17245
http://dx.doi.org/10.1119/1.17246
http://dx.doi.org/10.1063/1.1664490
http://dx.doi.org/10.1088/0143-0807/25/2/004
http://dx.doi.org/10.1088/0143-0807/20/4/305
http://dx.doi.org/10.1088/0143-0807/17/4/006
http://dx.doi.org/10.1119/1.1557300
http://dx.doi.org/10.1088/0143-0807/25/5/005
http://dx.doi.org/10.1088/0143-0807/23/2/306
http://dx.doi.org/10.1088/0143-0807/24/1/304
http://dx.doi.org/10.1088/0143-0807/25/2/L01
http://dx.doi.org/10.1088/0143-0807/25/2/L02
http://dx.doi.org/10.1088/0143-0807/22/1/102
http://dx.doi.org/10.1088/0143-0807/19/5/007
http://dx.doi.org/10.1103/PhysRev.1.355
http://dx.doi.org/10.1209/epl/i2005-10059-5
http://gallica.bnf.fr
http://archive.numdam.org/article/AFST_1902_2_4_5_0.pdf
http://dx.doi.org/10.1088/0143-0807/22/3/101
http://dx.doi.org/10.1023/B:RUPJ.0000049746.53970.fa
http://dx.doi.org/10.1088/0143-0807/25/2/015
http://dx.doi.org/10.1103/RevModPhys.73.663


768 M de Montigny and G Rousseaux

[15] Rousseaux G 2003 On the physical meaning of the gauge conditions of classical electrodynamics: the
hydrodynamics analogue viewpoint Ann. Fondation Louis Broglie 28 261–9 (Preprint physics/0511047)

[16] Santos E S, de Montigny M, Khanna F C and Santana A E 2004 Galilean covariant Lagrangian models Ann.
Phys. 37 9771–89

de Montigny M, Khanna F C and Santana A E 2003 Nonrelativistic wave equations with gauge fields Int. J.
Theor. Phys. 42 649–71

[17] Takahashi Y 1988 Towards the many-body theory with the Galilei invariance as a guide. I. Fortschr. Phys. 36
63–81

Takahashi Y 1988 Towards the many-body theory with the Galilei invariance as a guide: II Fortschr. Phys. 36
83–96

Omote M, Kamefuchi S, Takahashi Y and Ohnuki Y 1989 Galilean covariance and the Schrödinger equation
Fortschr. Phys. 37 933–50

[18] de Montigny M, Khanna F C, Santana A E, Santos E S and Vianna J D M 2000 Galilean covariance and the
Duffin–Kemmer–Petiau equation J. Phys. A: Math. Gen. 33 L273–8

de Montigny M, Khanna F C, Santana A E and Santos E S 2001 Galilean covariance and the non-relativistic
Bhabha equations J. Phys. A: Math. Gen. 34 8901–17

[19] Duval C, Burdet G, Künzle H P and Perrin M 1985 Bargmann structures and Newton–Cartan theory Phys. Rev.
D 31 1841–53

Künzle H P and Duval C 1994 Relativistic and nonrelativistic physical theories on five-dimensional space-time
Semantical Aspects of Spacetime Theories ed U Majer and H J Schmidt (Mannheim: BI-Wissenschaftsverlag)
pp 113–29, and references therein
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