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a b s t r a c t

We present a derivation of the time averaged potential and kinetic energies for small-amplitude surface
waves on a shear flowwith constant vorticity. The effect of surface tension is also taken into consideration.
It is demonstrated that the virial theorem of the energy equipartition between the potential and kinetic
components is not valid in general for waves on a shear flow. We also show that waves with a negative
energy may exist in a shear flow, and we find the condition for existence of such waves.

© 2016 Elsevier Masson SAS. All rights reserved.
1. Introduction

The wave energy concept is of primary significance in the
investigation of various problems of wave generation, propagation
and absorption in hydrodynamic shear flows. Considering linear
problems, we usually deal, however, with the ‘quasi-energy’ of
monochromatic waves [1,2]. The physical meaning of the quasi-
energy and its relation to the total energy of a hydrodynamic flow,
including wave-induced flows, have been considered also in [3,4].
The important point following from the quasi-energy concept is
that the wave energy may change its sign and become negative
in the presence of a shear flow. When the negative energy waves
(NEWs) exist, the total energy of a medium with waves becomes
less than the energy of the medium without waves. So, no energy
is needed to excite NEWs; instead, some energy can be extracted
from the system by the excitation of such waves. The more energy
is extracted, the more intensely NEWs are excited in the system.

The concept of waves possessing opposite sign energies in
shear flows enables researchers to interpret various types of
instabilities in hydrodynamics [3,4]. In particular, the well-known
Kelvin–Helmholtz instability can be interpreted in terms of energy
exchange between two modes — one of positive energy and
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another of negative energy [5,4]. It is clear that the NEWs may
exist only in non-equilibrium media, in particular, in shear flows
with a large stock of kinetic energy. In addition to hydrodynamic
flows, there are many other examples of such media supporting
NEWs; for example, beams of charged particles in a plasma, two-
level atomic systems, etc.

The concept of negative energy waves was proposed by L. Chua
as applied to waves in electron beams back in 1951 (see, e.g. [6])
and has since been widely used in hydrodynamics, plasma physics
and electronics; numerous examples can be found in [7–10,5,11,4].
Nevertheless, this concept still causes certain difficulties to some
researchers, therefore it seems reasonable to consider one more
example of practical interest which demonstrates the possibility
of existence of NEWs and represents a certain academic interest.
We consider below surface gravity-capillary waves on a shear flow
with the velocity profile linearly depending on the depth (the
Couette-type shear flow with a constant vorticity).

There is another interesting aspect of the problemofwaveprop-
agation in shear flows. It is common knowledge that average po-
tential and kinetic energies are equal in both surface and internal
waves of small amplitude in amotionless fluid [12] by virtue of the
virial theorem [13] for arbitrary mechanical systems. An average
value of the Lagrangian function [14] that coincides with the dif-
ference between the kinetic and potential energies is equal to zero
in this case. However, average kinetic and potential energies do not
necessarily coincide in non-equilibrium media such as, for exam-
ple, stratified fluids with shear flows. Actually, the kinetic energy
density in a shear flow depends on the strength of the background
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flow (this will be specified below), whereas the potential energy
is independent of a shear flow and determined solely by the dis-
placement of the free surface (and isopycnic surfaces in a stratified
fluid). In this case, the Lagrangian function is no longer determined
by the difference between the kinetic and potential energies al-
though the average value of the Lagrangian is still equal to zero.
The latter may occur because the average Lagrangian of linear per-
turbations is proportional to the function D(ω; k), where D(ω; k)
is proportional to the dispersion relation for small-amplitude per-
turbations [14,5]. Such systems are well known in mechanics and
are referred to as non-natural systems [15].

In Ref. [16] was investigated the relation between the kinetic
and potential energies for internal waves of infinitesimal ampli-
tude at the interface between two infinitely thick layers of fluids
with different densities moving with constant velocity with re-
spect to each other (see also Sect. 1.9 in the book [4]). The prob-
lem was analysed both with and without surface tension effect
between the layers. The explicit expressions for kinetic and poten-
tial energies have been derived and it has been shown that under
a certain condition the wave energy may become negative.

The wave energy for surface gravity-capillary waves on a
uniform flow has been also calculated by Dysthe [17] for a fluid
of a finite depth. The analysis of results obtained can reveal the
existence of NEWs in such system, but this issue has not been
considered in Dysthe’s Lecture Notes.

In the recent publication by Ellingsen and Brevik [18] the wave
energy of surface gravitywaves on a shear flowwith linear velocity
profile has been calculated for a fluid of a finite depth. But the
authors obtained an incorrect result (the source of the error will be
elucidated below) and did not discuss the possibility of existence
of NEWs.

Below we calculate the total energy of small-amplitude surface
gravity-capillary waves on a shear flow with a linear velocity
profile in a fluid of a finite depth. Thenwe consider the relationship
between the kinetic and potential energies for such waves and
show that they are not equal in general. With the surface tension
effect taken into account we derive the condition when NEWs
appear in the system. This problem represents not only an
academic interest, but may be important for practical applications.
The results obtained can be further developed in application to the
study of wave blocking phenomena when a shear flow gradually
varies in the horizontal direction.

2. Problem statement and the dispersion relation

Let us consider one-dimensional wave propagation on a surface
of moving water of a finite depth h. We assume that the velocity
profile of the water flow U(z) is a linear function of the depth
U(z) = U0 + αz. Here U0 is the water speed at the free surface,
and α characterises the vorticity of the background flow.When the
fluid velocity vanishes at the bottom, thenα = U0/h, but in general
α may be an independent parameter; in particular, putting α = 0
we obtain the uniform current without vorticity. The shear flow
vorticity can be controlled in the finite depth fluid with the help
of a movable bottom, for example, by using a rubber conveyor. It
is assumed that the axis z is directed upward with a zero at the
unperturbed water surface. For certainty we suppose that U0 > 0,
i.e. the background flow at the water surface is co-directed with
the axis x; in other words, the velocity vector is U(z) = U0(z)î. The
sketch of the flow considered here is shown in Fig. 1.

The dispersion relation for surface waves in water with a
current linearly varying with depth has been derived both for
pure gravitational waves [19–22] and for capillary–gravity waves
[23,24,18]. We will re-derive it below in the form convenient for
our analysis. The main aim of this paper is to derive in the linear
approximation the wave energy of surface gravity-capillary waves
Fig. 1. Sketch of the fluid flow in the reference coordinate frame associated with
the immovable bottom. Line 1 depicts the velocity with the uniform profile and line
2 the velocity with the linear profile.

propagating on a shear flow and demonstrate some interesting
nontrivial features related to it. In particular, we show that under
certain conditions the wave energy may become negative which
indicates that the flow may become unstable. The existence of
negative energy waves in uniformly moving media is well-known
(see the references listed above), but to the best of our knowledge,
the influence of the basic flow vorticity on thewave energy has not
been studied thus far. In our study we obtain the general results
which account for the arbitrary flow vorticity and naturally reduce
to the case of a uniformly moving fluid. We calculate explicitly
the ratio of kinetic to potential energies for a linear wave and
analyse in detail its dependence on the flow intensity, vorticity and
surface tension.We also show that the virial theorem of the energy
equipartition between these two energy components is not valid
for waves on a linear shear flow.

2.1. Basic equations and derivation of the dispersion relation

For our purposes it is convenient to present the Euler equation
in the Helmholtz form [25]:

∂(curl v)
∂t

= (curl v·∇) v − (v·∇) curl v. (1)

In a two-dimensional flow when all variables depend on two
spatial coordinates x and z, the curl of any vector is perpendicular
to the x, z-plane, whereas operator nabla has components in that
plane. Therefore the first term on the right-hand side of Eq. (1) is
zero, and the equation reads

∂(curl ṽ)
∂t

= −(v·∇) (curlU + curl ṽ), (2)

where ṽ is the perturbation of the velocity field, and U(z) is the
background flow with the linear profile shown in Fig. 1; its curl is
constant and directed perpendicular to the x, z-plane, curlU = α ĵ
(the flowwith constant vorticity). In this case the time derivative of
the basic vorticity vanishes, and the velocity perturbation remains
potential if it was potential initially. This allows us to consider the
potential velocity perturbation ṽ ≡ (u, v) = ∇ϕ superimposed
on the background flow of constant vorticity. Note that this is
the only case of vortical flow which is compatible with potential
perturbations [26]. Then we have the following equation for the
velocity potential in the entire fluid domain:

∆ϕ = 0. (3)

The boundary conditions are conventional: there is no water flow
through the rigid bottom, therefore

∂ϕ

∂z
= 0 at z = −h. (4)
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Then there is a kinematic boundary condition at the free surface
η(x, t) which reads in the linear approximation as:

∂η

∂t
+ U0

∂η

∂x
=

∂ϕ

∂z
at z = 0. (5)

The dynamic boundary condition at the free surface can be
readily derived in the linear approximation. To this end let us
present the Euler equation in the Lamb form [25]:

∂v
∂t

+ ∇


v2

2
+

P
ρ

+ gz


= v × curl v, (6)

where P(z) is the pressure, ρ is water density, and g is the
acceleration due to gravity.

Consider now the x component of this equation at the surface
z = 0 and substitute into it v = U(z)î+∇ϕ, whereU(z) = U0+αz,
and the pressure P(0) = Pa + ρgη − σ


∂2η/∂x2


at z = 0, where

Pa is the atmospheric pressure which is assumed to be a constant,
and σ is the surface tension coefficient. Then we obtain

∂

∂x


∂ϕ

∂t
+ U0

∂ϕ

∂x
+ gη − γ

∂2η

∂x2


= −α

∂ϕ

∂z
at z = 0, (7)

where γ = σ/ρ is the normalised surface tension. This is nothing
but the Bernoulli equation for a potentialmotion in the linear shear
flow (cf. [18]).

Looking for an elementary solution to the boundary value
problem in the form

η = A exp[i(ω t − î·k x)],

ϕ = B cosh |k|(z + h) exp[i(ω t − î·k x)],

we obtain from Eq. (5):

B = iA
ω − U·k

|k| sinh |k|h
, (8)

where ω is the frequency of infinitesimal amplitude surface wave,
k = k î is the wavenumber which can be either parallel or anti-
parallel to the vector U depending on the sign of the parameter k.

Then, from Eq. (7) we derive the dispersion relation [23,24,18]:

(ω − U·k)2 + α
U·k
U0|k|

tanh(|k|h)(ω − U·k)

−

g + γ k2


|k| tanh(|k|h) = 0. (9)

Solution to this quadratic equation can be presented in the
form:

ω±
= U·k


1 −

α

2
tanh |k|h
U0|k|


+

α

2
tanh |k|h

2
+


g + γ k2


|k| tanh |k|h. (10)

For the better understanding of what this equation describes,
we present below a graphical analysis of its dimensionless form:

ω̃±
=


Û0·k̂0


(Fr |κ| − Ω tanh |κ|)

+


(Ω tanh |κ|)2 +


1 + Sκ2


|κ| tanh |κ| (11)

where ω̃ = ω
√
h/g, κ = kh, Fr = U0/

√
gh is the Froude number,

Ω = αh/(2
√
gh) is the normalised vorticity of the basic flow, and

S = γ /(gh2) = σ/(ρgh2) is the normalised surface tension, and Û0

and k̂0 are the unit vectors of the flow velocity and wavenumber,
correspondingly. (Notice from the first term in Eq. (10), in the
shallow-water limit, tanh |k|h → |k|h, that it may be reasonable to
define the effective Froude number for shear flows as the ratio of
Fig. 2. (Colour online) Dependence of dimensionless wave frequency on the
dimensionlesswavenumber at different Froude numbers as per Eq. (11)withΩ = 0
and S = 0.005.

Fig. 3. (Colour online) Dependence of dimensionless phase speed on the dimen-
sionless wavenumber at different Froude numbers as per Eq. (11) with Ω = 0 and
S = 0.005.

the mean speed (rather than maximal speed U0) over the speed of
long waves. In such a case the effective Froude number for a shear
flow with constant vorticity shown in Fig. 1 (see line 2) would be
Freff = U0/2

√
gh = Fr/2. Hereweuse, however, amore traditional

definition of Froude number.)
For simplicity we first neglect the flow vorticity by setting Ω =

0, and we put for definiteness S = 0.005. Then in Fig. 2 we show
the evolution of dispersion curves described by Eq. (11) when the
Froude number increases.

Lines 1+–4+ represent dispersion relations ω̃+(κ) forwaves co-
propagatingwith the current so that Û0·k̂0 = 1; their phase speeds
(Ṽph ≡ ω̃/κ) are positive for any Froude number (see Fig. 3).

For the counter-current propagating waves Û0·k̂0 = −1 the
situation is a bit more interesting. When Fr = 0, line 1− is just
a mirror reflection of line 1+ about the vertical axis in Fig. 2;
it describes surface-gravity waves propagating to the left with
negative phase speed (cf. lines 1+ and 1− in Fig. 3). When the
Froude number increases, line 1− transforms into line 2−, and then,
when the Froude number attains the critical value Fr = Frc , it
transforms into line 3− as shown in Fig. 2. At this critical value the
dispersion line touches the κ-axis, and there is a finite κ for which
ω̃− becomes equal to zero together with the phase speed. Notice
that at Fr < Frc , the phase speeds are negative for κ < 0. This
means that the correspondingwaves propagate against the current
(see lines 2− and 3− in Fig. 3).

When Fr becomes greater than Frc , thewave frequency formally
becomes negative for a certain interval of wavenumbers (see lines
4− and its dashed portion in Fig. 2); the corresponding phase speed
on that interval becomes positive (because ω̃ < 0 and κ < 0
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simultaneously). This means that the current becomes so strong
that it pulls these waves in the direction of the flow. As a result
the waves move downstream relative to the immovable observer.
In the immovable coordinate frame such co-current propagating
waves have positive frequencies and wavenumbers; their speeds
are shownby line 4−

r in Fig. 2. Formally the transformation from the
dashed portion of line 4 to the corresponding solid line 4−

r follows
from the invariance of the dispersion relation (10) with respect to
the transformation ω±

→ −ω± and k → −k with simultaneous
change of sign in front of the square root.

Usually the appearance of negative frequencies in a wave
system signals that potentially unstable NEWs exist in such a
system [7–10,5,11,3,4]. This is also the case for surface waves on
a uniform current (Ω = 0) considered here. However, in the
presence of vorticity (when Ω ≠ 0) the situation becomes more
complicated, and the condition for existence of NEWs depends on
the vorticity. Below we consider this issue in detail.

3. Wave energy

Following [16,4,17], let us calculate the wave energy of small
perturbations averaged over the wave period on the basis of the
solution derived in the previous section. The total wave energy
can be presented as the sum of the potential energy P and kinetic
energy K : E = P +K . In the linear approximation the wave energy
is proportional to the squared wave amplitude, therefore in the
following calculations we will retain only those terms which are
quadratic in the wave amplitude. The potential energy does not
depend on a flow; it is determined entirely by the deflection of the
free surface from the equilibrium position z = 0:

P =


ρg
2

η2
+

σ

2


∂η

∂x

2


=
ρA2

4


g + γ k2


, (12)

where angular brackets stand for averaging over the wave period
T :

⟨f (t)⟩ ≡
1
T

 T

0
f (t) dt. (13)

The kinetic energy of wave motion can be determined as
the kinetic energy of a moving fluid with a wave perturbation
minus the kinetic energy of the same moving fluid without the
perturbation:

K =
ρ

2

 η

−h


[u + U(z)]2 + v2

− U2(z)

dz


≈

ρ

2

 0

−h


u2

+ v2 dz

+ ρ

 η

−h
uU(z) dz


. (14)

The first integral in the last expression represents an essentially
positive quantity, whereas the second integral can be of either sign.
So, we can replace the upper limit of integration in the first integral
by zero, because the integrand is the quantity which is already
quadratic in the wave amplitude, since u ∼ v ∼ A (see Eqs. (16)
and (17)). However, this is not the case for the second integral
as it contains a product uU(z) which is of first order in the wave
amplitude. This integral can be presented as the sum

ρ

 0

−h
uU(z) dz


+ ρ

 η

0
uU(z) dz


≈ ρU(0) ⟨η(x, t)u(x, 0, t)⟩ . (15)

The first term on the left hand side gives zero after averaging
on time as it is a sinusoidal function of time (it is linear in
the perturbation). The second integral can be approximately
calculatedwith the help of the Lagrangemean value formula. Aswe
consider linear perturbations of infinitesimally small amplitude,
the variation with z of U0 and ∂ϕ/∂x on the interval [0, η] is
insignificant. Using the solution derived in Section 2we can readily
calculate all integrals. We present first the perturbed velocity field
in the real form:

u(x, z, t) = Re


∂ϕ

∂x


= A î·k

ω − U·k
|k| sinh |k|h

cosh |k|(z + h) cos(ωt − î·k x), (16)

v(x, z, t) = Re


∂ϕ

∂z


= −A

ω − U·k
sinh |k|h

sinh |k|(z + h) sin(ωt − î·k x). (17)

Substituting this into Eqs. (14) and (15)we obtain for the kinetic
energy averaged over the wave period:

K =
ρA2

4
ω2

− U2
0 k

2

|k| tanh |k|h
. (18)

Note that in [18] the authors have calculated the kinetic energy
of pure gravity surface waves on a linear shear flow. However,
they obtained an incorrect result because theymistakenly assumed
that the last integral in Eq. (14) depends linearly in the wave
perturbation and therefore vanishes after averaging over time.
As has been shown above, that integral consists of two parts
(see Eq. (15)), one of which indeed depends linearly on the
wave perturbation, while the other depends quadratically on the
perturbation (via the upper limit!) and contributes to the kinetic
energy. This agrees with the earlier findings for kinetic energies of
surface and internal waves in uniform flows [16,4,17].

Using the dispersion relation (10) we can present the kinetic
energy for co-propagating waves K+ and counter-propagating
waves K− in the following form

K±
=

ρA2

4


g + γ k2 + α


U0 −

α

2
tanh |k|h

|k|



×


Û0·k̂0

 
1 +

4|k|

g + γ k2


α2 tanh |k|h

− 1


. (19)

As one can see from the expressions for the potential and kinetic
energies, Eqs. (12) and (19), they are not equal in general. They
become equal in the absence of the background flow in accordance
with the virial theorem [13] and at some particular values of the
wavenumber when U0 ≠ 0.

3.1. The relationship between the kinetic and potential energies

Let us consider the ratio of the kinetic and potential energies
and analyse it as a function of wavenumber and other parameters
in the dimensionless variables defined after Eq. (11):

R±
≡

K±

P
= 1 + 2

Ω

1 + Sκ2


Fr − Ω

tanh |κ|

|κ|



×


Û0·k̂0

 
1 +

|κ|

1 + Sκ2


Ω2 tanh |κ|

− 1

 . (20)

As one can see, the energy ratio depends on many parameters,
κ, Fr, Ω , and S. To simplify the situation let us neglect first the basic
flow vorticity by putting Ω = 0. Then we obtain:

R±
= 1 + 2


Û0·k̂0


Fr


|κ|

1 + Sκ2

tanh |κ|

. (21)
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a

b

c

Fig. 4. Dependences of the energy ratio on the dimensionless wavenumber. Frame
(a) — no vorticity (Ω = 0) and no surface tension (S = 0); lines 1 and 1′ pertain
to Fr = 0.1, lines 2 and 2′ — to Fr = 0.2. Frame (b) — no vorticity (Ω = 0), but
nonzero surface tension (S = 0.04); lines 3 and 3′ pertain to Fr = 0.1, lines 4 and
4′ — to Fr = 0.2. Frame (c) demonstrates the effect of vorticity at constant Froude
number (Fr = 0.2) and surface tension (S = 0.04); lines 4 and 4′ are the same as
in frame (b) when Ω = 0; lines 5 and 5′ pertain to Ω = 1.

Plots of R±(κ) for two values of Froude number are shown in Fig. 4
(see frames (a) and (b)) — cf. with the plots of R± for internal waves
on the interface between two moving layers [16,4].

There are several specific features which are worthy of
discussion. First of all, note that the branches 1′ and 1, as well as
2′ and 2 for positive and negative wavenumbers (i.e. for co- and
counter-flow propagatingwaves) do notmeet each other at κ = 0,
because k̂0 changes sign, being a unit vector. So that R+

−R−
= 4Fr.

Secondly, the kinetic energy of counter-current propagatingwaves
is less than the potential energy; whereas it is greater than the
potential energy for the co-current propagatingwaves. Thirdly, the
energy ratiomaybecomenegative for counter-current propagating
waveswhen the Froude number is sufficiently large. This can occur
when the kinetic energy becomes negative (the potential energy is
always positive as it follows from Eq. (12)); the condition for this
is

Fr >
Frc1
2

, where Frc1 =


1 + Sκ2

 tanh |κ|

|κ|
. (22)

When the surface tension is neglected, S = 0, then Eq. (22) has
only one real root κ(Fr) for any Fr < 1/2; the kinetic energy is
negative for κ < −κc , where κc can be determined from Eq. (22)
for a fixed value of the Froude number. But if Fr > 1/2, then
the kinetic energy is negative for all counter-current propagating
waves, including infinitely long waves.

With the surface tension taken into consideration, the kinetic
energy may become negative only when the Froude number is
sufficiently large Fr > Frmin (see line 4 in Fig. 4(b)); the threshold
Fig. 5. Dependences of the minimum Froude numbers on the surface tension
parameter when (i) the kinetic energy vanishes and then becomes negative (line 1)
and (ii) when the total energy vanishes and then becomes negative (line 2). Dashed
vertical line shows the maximum possible value of Smax = 1/3.

value Frmin depends on the surface tension parameter S. It can be
determined from Eq. (22) and presented in the parametric form:

S(κ) =
1
κ2

·
tanh |κ| − |κ|(1 − tanh2

|κ|)

tanh |κ| + |κ|(1 − tanh2
|κ|)

, (23)

Frmin(κ) =
tanh |κ|

2|κ|

tanh |κ| + |κ|(1 − tanh2

|κ|)
 . (24)

The dependence Frmin(S) is shown in Fig. 5. Asymptotically,
when κ → −∞ (S → 0), it reduces to Frmin(S) =

4
√
S/4 (see

line 1′ in Fig. 5); in the dimensional variables this dependence
reads (U0)min =

4
√

σg/4ρ. As will be shown below, the total
energy becomes negative at 2Frmin(S) =

4√4S or in the dimensional
variables at U0 =

4
√
4σg/ρ, which is nothing but the minimum

phase speed of gravity-capillary waves in a deep water without a
background flow.

In another limiting case when |κ| → 0 (S → 1/3) the depen-
dence Frmin(S) asymptotically reduces to Frmin(S) = (67 + 195S +

45S2 − 675S3)/224. When S reaches 1/3, the kinetic energy van-
ishes at κ = 0− and Fr = 0.5 (the function R−(κ) has a minimum
at this point). For all greater values of S the function R−(κ) has a
minimum at κ = 0− and Fr > 0.5.

To illustrate the effect of vorticity on the energy ratiowepresent
in Fig. 4(c) two lines – one for the case when there is no vorticity,
Ω = 0, and another one for the case when there is a vorticity,Ω =

1. As one can see, the vorticity effect is similar, to a certain extent,
to the increase of surface tension. It reduces the effect of current
and prevents the appearance of negative values of kinetic energy.
The maximal value of R−

max = 1 − 2(Fr − Ω)
√

Ω2 + 1 + Ω


is attained at κ = 0−. Meanwhile, the minimum value of R+

min =

1+2(Fr−Ω)
√

Ω2 + 1 − Ω


is attained at κ = 0+, but it always

remains positive.

3.2. Negative energy waves

Let us now calculate the total period-averaged wave energy
E = P + K :

E±
=

ρA2

2

g + γ k2 +
α

2


U0 −

α

2
tanh |k|h

|k|



×


Û0·k̂0

 
1 +

4|k|

g + γ k2


α2 tanh |k|h

− 1

 . (25)
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Fig. 6. Dependence of normalised wave energy on different dimensionless
parameters. In frame (a) Ω = 0; solid lines pertain to S = 0.005, whereas dashed
lines pertain to S = 0. Lines 1 and 1′ are plotted for Fr = 0.25; lines 2 and 2′ — for
Fr = 0.5. Frame (b): lines 1 and 2 are the same as in frame (a); dotted lines 1′′ and
2′′ are plotted for Ω = 0.5, S = 0.005, but for different Froude numbers: line 1′′ —
for Fr = 0.25, and line 2′′ — for Fr = 0.5.

We again present this quantity in dimensionless variables:

E±
≡

2E±

ρgA2
= 1 + Sκ2

+ Ω


Fr − Ω

tanh |κ|

|κ|



×


Û0·k̂0

 
1 +

κ

1 + Sκ2


Ω2 tanh κ

− 1

 . (26)

Graphics of E−(κ) for counter-flow propagating waves with
different values of Fr, Ω and S are shown in Fig. 6.

Using the dispersion relation (10), the expression for the wave
energy can also be presented in the form

E±
=

ρA2

2|k| tanh |k|h


ω±

− U·k
 

ω±
+


Û0·k̂0

 α

2
tanh |k|h


,

(27)

or in the dimensionless form:

E±
=


ω̃±

−


Û0·k̂0


Fr |κ|

 
ω̃±

+


Û0·k̂0


Ω tanh |κ|


|κ| tanh |κ|

. (28)

Eq. (27) can be compared with what was derived by Dysthe [17] in
the case of a uniform flow with α = 0 (Ω = 0).

As one can see from Eq. (26) and Fig. 6, not only the kinetic
energy, but the total energymay also benegative. From the analysis
of Eq. (28) it follows that the wave energy may be negative only
for counter-current propagating waves when ω̃−

+ Fr |κ| > 0 and
ω̃−

−Ω tanh |κ| < 0,where κ < 0. The former condition is fulfilled
for any negative κ , whereas the latter condition by means of the
dispersion relation Eq. (11) for ω̃− reduces to:

Fr > Frc ≡


1 + Sκ2 + Ω2 tanh κ

κ


tanh κ

κ
. (29)

Thus, one can see that when waves propagate on a shear
flow, the wave energy becomes negative not together with the
frequency, but when ω̃− < Ω tanh |κ|. This circumstance was not
previously known.

The concept of negative energy waves is very important in the
general wave theory, because existence of suchwaves in a physical
Fig. 7. Dependences of the critical Froude number as functions of κ for several
values of Ω and S for counter-flow propagating surface waves. Line 1 pertains to
the case Ω = 0, S = 0; line 2 with dots pertains to Ω = 0, S = 0.005; line 3
pertains to Ω = 1, S = 0.005.

system signals a potential instability of the system. This issue
has been discussed in many books and reviews, see, for instance,
[7–9,5,10,11,3,4] and references therein. In particular, the well-
known dissipative and radiative instabilities of waves in shear
flows (see the literature cited above) are associatedwith theNEWs.
When there is an appropriate energy sink in the system, NEWs
exponentially grow with time in the linear approximation due to
conversion of the kinetic energy of a shear flow into the wave
energy of small perturbations. Note, however, that the existence
of NEWs does not imply the presence of an instability, in general.
They can grow only when there is an appropriate sink of energy.
The wave energy depends on the choice of a coordinate frame,
so that it may be negative in one coordinate frame, but positive
in another. However, the dissipative function changes accordingly
in the transition from one coordinate frame to another, so that
the fact of stability or instability is invariant and does not depend
on the choice of coordinate system. The details can be found in
[5,10,11,3,4].

In the particular case of a uniform flow (Ω = 0) Eq. (29) reduces
to Frc1 as defined in Eq. (22). Theminimumvalue of Frc in the deep-
water limit when κ ≫ 1 is (Frc)min =

4√4S. In the same limiting
case, the minimum value of Frc for the flow with a constant non-
zero vorticity (Ω ≠ 0) is a more complicated function of S and
Ω . Replacing tanh κ by 1 in Eq. (29) for Frc and solving for the
stationary point for κ , we obtain

κst(S, Ω) = Re

3 +


3
√
S

9Ω2

+


3


27Ω4 − 1/S

2/3


(9S)2


9Ω2 +


3


27Ω4 − 1/S

1/3


≈

1 + Ω2
√
S − 3Ω4S/2
√
S

. (30)

The latter approximation presumes that the quantity Ω2
√
S is

small

Ω2

√
S ≪ 1


.

Substituting κst(S, Ω) into the equation for Frc , we obtain
approximately:

(Frc)min ≈
4√4S +

√
2
4

Ω2S3/4 −
9
√
2

32
Ω4S5/4. (31)

Plots of the critical Froude number as functions of κ are shown in
Fig. 7 for several values of Ω and S.

As one can see from Eq. (29), if there is no surface tension, the
dependence of Frc on κ is monotonic which means that for each
given value of Fr <

√
1 + Ω2 there is only one root κc < 0. For

all κ ∈ (−∞, κc) there are NEWs in the system. This is illustrated
by line 1 in Fig. 7. In particular, when Fr >

√
1 + Ω2, then κc = 0,

and all counter-current propagating waves become NEWs.
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When the surface tension is taken into consideration, then
NEWsmay exist if Fr > (Frc)min which depends on S and Ω . In this
case, NEWs may exist only in the finite range of κ between two
intersections of line 2 with dashed horizontal line shown in Fig. 7.
In particular, if Fr >

√
1 + Ω2, then NEWs range from a certain

value κm < κc (|κm| ≫ |κc |) to zero. The influence of vorticity is
again similar to the increase of surface tension (see line 3 in Fig. 7)
— the range of NEWs becomes narrower and the threshold value
of their appearance increases. However, unlike the surface tension
effect, the vorticity cannot prevent the appearance of NEWs.

In general, the minimal Froude number leading to the
appearance of NEWs can be found from Eq. (29) in the parametric
form. It can be readily shown that NEWs appear when the kinetic
energy is negative and two times greater in absolute value than the
potential energy.

4. Discussion and conclusion

In this paper we have presented a detailed analysis of wave
energy for infinitesimal amplitude surface waves on a shear flow
with a linear profile. It has been shown that at a certain velocity of
the background flow the wave energy may become negative. The
effect has been analysed and the dependence of wave energy on
the surface tension, Froude number (intensity of the background
flow) and shear flow vorticity has been presented.

It has been shown that the potential energy remains positive
regardless of the presence of a shear flow, whereas the kinetic
energy depends on the parameters of a shear flow (e.g. velocity
and vorticity). Namely, the kinetic energy may become negative,
and consequently the total energy may become negative too.

It has also been shown that the virial theorem, i.e., the equality
of period-averaged kinetic and potential energies [13], does not
hold in shear flows. This agreeswith the earlier findings for internal
waves in two layer fluids [5,16,4], as well as for surface waves on a
uniform flow [17] (the same conclusion has been made for surface
waves on a linear shear flow [18], but the expression for the kinetic
energy was incorrect).

Note also that in the Lecture Notes on linear wave theory [17]
Dysthe has derived the formula for the density of wave energy,
which is similar to our Eq. (27), but does not contain the term
describing the effect of flow vorticity (here we call E the wave
energy just for the sake of brevity). Then, using the formula derived,
Dysthe has shown that it can be presented in terms of conservation
of thewave action (alias the density of number of quasi-particles in
the quantum-mechanical terminology [4]), N ≡ E0/ω0 = E/(ω0 +

U·k), where E0 and ω0 pertain to waves on a stationary fluid, and E
andω ≡ ω0+U·k pertain towaves in the coordinate framemoving
with the velocity −U with respect to the stationary fluid.

Such a simple relationship between the energy and frequency
is possible only for a uniformly moving fluid. In our case, where
the fluid flow is non-uniform in depth, the relationship between
the energy and frequency is more complicated. Denoting the wave
energy in the stationary fluid by E±

0 = ρ(g + γ k2)A2/2 (see [16,4,
17]), we can rewrite Eq. (27) as

E±
=

E±

0

(g + γ k2)|k| tanh |k|h


ω±

− U·k


×


ω±

+


Û0·k̂0

 α

2
tanh |k|h


. (32)

The denominator on the right-hand side of Eq. (32) can be
replaced by the expression which follows from the dispersion
relation (9):

(g + γ k2)|k| tanh |k|h

= (ω±
− U·k)


ω±

− (U·k)


1 − α

tanh |k|h
U0|k|


.

After that Eq. (32) reads:

E±
= E±

0

ω±
+


Û0·k̂0


(α/2) tanh |k|h

ω± − (U·k) (1 − α tanh(|k|h)/U0|k|)
. (33)

Introducing the notation

ω±

0 = ω±
− (U·k)


1 − α

tanh |k|h
U0|k|


, (34)

we can finally rewrite Eq. (33) as

E±

ω±

0 + (U·k) (1 − α tanh(|k|h)/2U0|k|)
=

E±

0

ω±

0
. (35)

For a uniformly moving fluid without shear (α = 0) Eqs. (34) and
(35) reduce to thewell-known formula for the energy andDoppler-
shifted frequency (see, e.g., [17]). In this case, the ‘rest coordinate
system’ corresponds to the system which runs together with the
fluid moving with the velocity U. In this system surface waves
propagate in the calm water and have a positive energy E±

0 and
frequency ω±

0 .
For waves on a shear flow the ‘rest coordinate system’ runs

with the velocity which depends on the wavenumber and vorticity
α: (U·k) (1 − α tanh |k|h/U0|k|). Due to the combined effect of
dispersion and shear it is impossible to transfer to such a
coordinate system where all waves propagate on calm water.

Regarding physical interpretation of the condition (29), when
NEWs appear in a shear flow, we should notice that, as has been
shown in Section 3, in consistency with the linear approximation,
the period-averaged wave energy can be presented as

⟨E⟩ =
ρ

2


gη2

+
σ

ρ


∂η

∂x

2

+

 0

−h


u2

+ v2 dz


+ ρ U0 ⟨η(x, t)u(x, 0, t)⟩ . (36)

From this expression it is clearly seen that the expression in the
first angular brackets on the right-hand side represents essentially
positive quantity, whereas the last term can be of either sign,
i.e., positive or negative. Namely, thanks to this last term the total
energy may become negative, if the perturbation of fluid surface
η(x, t) is in anti-phase with the perturbation of horizontal fluid
speed u(x, 0, t).

In conclusion, we present an estimate of the conditions under
which NEWs appear, both for a uniform flow and for a shear flow
with a constant vorticity. To this end, let us choose the following
parameters for the clean water of density ρ = 103 m3, and surface
tension 0.073 N/m at T = 20 °C. In this case, as follows from
Eq. (31) with Ω = 0, NEWs with km =

√
ρg/σ ≈ 366.4 m−1

(λm ≈ 1.7) cm appear on deep water at U0 = 23 cm/s (Froude
number Fr =

4√4S = 0.74) — this result is well-known [3,4]. The
stronger the surface tension, the larger the wavelength λm ∼

√
σ .

NEWs appear when the wave frequency at the local minimum
reaches zero (see line 3− in Fig. 2).

If the current profile varies linearly with the depth (see line
2 in Fig. 1), so that the vorticity is α/2 = U0/2h, then NEWs
appear approximately at the same wavenumber (wavelength) and
current speed at the water surface U0 = 23 cm/s, but now the
wave frequency at the local minimum is 26.9 s−1, T = 0.23 s.
From the value of the Froude number, Fr = 0.74, we find the
fluid depth h = 0.75 mm and the dimensionless wavenumber
κ = kh = 2.75.With this value of κ the deep-water approximation
used here for the sake of simplicity is still satisfactorily applicable,
because tanh 2.75 ≈ 0.992. Thus, thewaves of smaller frequencies
at higher current speeds can be unstable when the appropriate
dissipation mechanism is taken into account. This may be of
particular interest for the technological processes of evaporation
and sputtering which deal with thin-film flows.
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