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Abstract This work is an attempt to test the concept

of the hydrodynamic charge (analogous to the electric

charge in electromagnetism) in the simple case of a

coherent structure such as the Burgers vortex. We

provide experimental measurements of both the so-

called Lamb vector and its divergence (the charge) by

two-dimensional particles images velocimetry. In

addition, we perform a Helmholtz–Hodge decomposi-

tion of the Lamb vector in order to explore its

topological features. We compare the charge with the

well-known Q-criterion in order to assess its interest in

detecting and characterizing coherent structure.

Usefulness of this concept in studies of vortex

dynamics is demonstrated.

1 Introduction

One of the crucial issues in turbulence is related to the

identification of the so-called coherent structures in

complex flows. These structures are characterized by a

spatial concentration of vorticity, a life time much

longer than the period of rotation (or turn-over time)

and by their unpredictability. Several criteria, which do

not focus on the vorticity distribution per se, have been

introduced in the literature for the purpose of detect-

ing coherent structures. However, no consensus has

been reached so far (Weiss 1991; Haller 2005).

Recently, the notion of ‘‘Q-criterion’’ (or Weiss

determinant) was introduced in order to characterize

turbulent flows mainly in numerical simulations: one

calculates the Laplacian of the dynamic pressure alone

to visualize the coherent structures (Dubief and

Delcayre 2000; Lesieur et al. 2003). Besides, a vortex is

characterized by a low pressure in its centre and its

core exhibits a local velocity minimum. Indeed, the

experiments of Douady et al. (1991) on the visualiza-

tion of coherent structures in a turbulent flow by

injecting air bubbles in water show that the bubbles do

accumulate in the centre of the structures that is in the

pressure minima (see also the numerical simulations of

Pumir (1994)), which correspond to the vorticity

maxima. These authors have pointed out the analogy

between the Q-criterion and the electric charge in

classical electromagnetism.

The goal of our paper is to validate experimentally a

criterion based on the so-called ‘‘hydrodynamic

charge’’ with the help of an analogy between fluid

mechanics and electromagnetism dating back to

Maxwell, to compare it with the Q-criterion, and to

demonstrate the interest of the new criterion to study

vortex dynamics. In particular, we aim at demonstrat-

ing the usefulness of this concept associated to the

mapping of the so-called ‘‘Lamb vector’’ in order to

characterize the vortex core and structure. According

to our knowledge, there are almost no experimental
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measurements of the Lamb vector as well as the

hydrodynamic charge.

2 The Lamb vector and the hydrodynamic charge

2.1 Theoretical background

The Navier–Stokes equation for incompressible flow

(�.u = 0) can be written in a form that was given,

among others, by Lamb (1878):

@tu ¼ �r
p

q
þ u2

2

� �
� 2X � u � mr � w;

where W = w/2 is the vortex vector (w = � · u is the

vorticity) which is analogous to the angular velocity

of solid rotation in solid mechanics. The Lamb vector

l = w · u = 2W · u (we can find also the expression

‘‘vortex force’’ in the literature to denote this vector)

represents the Coriolis acceleration of a velocity

field under the effect of its own rotation (usually

for solid body rotation, the Coriolis force is built

with a rotation vector which is independent of the

velocity).

Under the incompressibility constraint (�.u = 0),

Marmanis and Shridar have proposed independently a

set of ‘‘hydrodynamic Maxwell equations’’ which takes

the form (Marmanis 1998, Kirby et al. 1999, Shridar

1998):

r:w ¼ 0 or w ¼ r � u

@tw ¼ �r� l� mr�r� w or l

¼ �@tu �r
p

q
þ u2

2

� �
� mr� w

r:l � qH ¼ �r2 p

q
þ u2

2

� �

where qH is the so-called ‘‘hydrodynamic charge

density’’.

The first equation stands for the conservation of

the vorticity flux along a tube of vorticity. It implies

the absence of monopole source of vorticity as a

vorticity tube that wraps on itself, goes to infinity or is

connected to the walls of the flow volume. One finds

the second and third equations by taking respectively

the curl and divergence operators of the Navier–

Stokes equation. The second one illustrates that the

temporal variation of the angular velocity is equal to

the torque exerted by the Coriolis force that is the

Lamb vector. The third one shows that the sources of

the Lamb vector are the pressure and velocity gradi-

ents.

The hydrodynamic charge can be seen as a topo-

logical feature of the flow. Indeed, it is expressed

mathematically by the ‘‘curvature’’ (second derivative)

of the sum of potential (pressure) and kinetic energies.

As a matter of fact, the Laplacian operator was defined

by James Clerk Maxwell in his famous Treatise (Clerk

Maxwell 1873) (volume 1, article 26) as the ‘‘concen-

tration’’ of a quantity since it indicates the excess of the

value of the quantity over its mean value in the

neighborhood of the point. Vortices are topological

concentration of energy (both potential and kinetic).

One notices that the charge vanishes where the flow is

irrotational (w = 0 implies l = 0). There exist localized

topological structures associated with a charge that

correspond to vorticity filaments, vortices, and, more

generally, to the coherent structures.

One can resume the analogy due to Marmanis

(1998) and Shridar (1998) with a table. Each electro-

magnetic property has an hydrodynamic counterpart:

Hydrodynamical
quantities

Electromagnetic
quantities

Specific enthalpy p/q Scalar potential V
Velocity u Vector potential A
Vorticity w Magnetic induction B
Lamb vector l Electric field E
Hydrodynamic charge qH Electric charge qE

The Lamb vector can be seen as a ‘‘motional’’

electric field analogous to the so-called Lorentz electric

field which appears during a Galilean transformation

(E¢ = E + v · B and B¢ = B are analogous to

l¢ = l + w · v and w¢ = w). Moreover, the Lamb vector

of a cylindrical vortex is radial like the electric field

associated to a charged wire. That’s why a vortex is a

dual electromagnetic object as it is a tube of ‘‘magnetic

induction’’, which carries an ‘‘electric charge’’.

One can separate the Lamb vector in two parts

according to the so-called Helmholtz–Hodge decom-

position (Wu et al. 1999a, b, 2005):

l ¼ l== þ l? ¼ ra þ r � b with r:b ¼ 0

The indexes // and ? correspond to the projections of

the Lamb vector parallel (irrotational part) and

perpendicular (solenoidal part) to the wave vector in

the associated fourier space. One infers that the

hydrodynamic charge is a function only of the parallel

part l// and the scalar a is completely determined by the

incompressibility constraint (�.u = 0) :
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r:l ¼ r:l== ¼ �r2 p

q
þ u2

2

� �
¼ r2a ¼ qH

where a ¼ � p

q
þ u2

2

� �

We notice now that the Navier–Stokes equation can be

split in two parts:

l== ¼ �r
p

q
þ u2

2

� �
and l? ¼ �@tu � mr � r � u

The Helmholtz–Hodge decomposition of the Lamb

vector is not, in general, unique as one can subtract

simultaneously from l//(E//) and add to l?ðE?Þ the gra-

dient of a function, which is solution of a Laplace

equation (see the numerical implementation below).

For example, the vector potential (velocity) outside a

solenoid (a Rankine vortex) derives from a harmonic

function. Hence, its time derivative is a gradient that can

enter into the longitudinal part. The boundary condi-

tions are essential in order to guaranty uniqueness.

In the particular case of a stationary flow and when

the viscous effects are negligible, the Navier–Stokes

equations resume to the ‘‘auto-strophic’’ equilibrium

(one speaks of geo-strophic equilibrium when the earth

coriolis effect equilibrates the pressure gradient):

l ¼ w � u ¼ l== ¼ ra

The Lamb vector is perpendicular to the surface of

constant a and each of these surfaces features

the streamlines and the vorticity lines (Sposito 1997):

w.� a ” 0 and u.� a ” 0. This statement ceases to be

true at Beltrami points where velocity and vorticity are

parallel (Sposito 1997). In Electromagnetism, it would

correspond to the motion along a magnetic field line:

electrons are not influenced in this case.

Hence, the transverse component of the Lamb

vector is equal to zero and this implies the existence of

a relation between the stream function and the vor-

ticity, which in 2D is equal to minus the Laplacian of

the stream function (Lamb 1878). This property is very

important in 2D turbulence, which features an inverse

energy cascade from the small to the large scales of the

flow. Indeed, in 3D turbulence, it is the transverse

component of the Lamb vector, which is at the origin

of the direct cascade of energy from the large to the

small scales of the flow (Speziale 1989; Wu et al.

1999a,b). It can be shown that the longitudinal com-

ponent is passive: its evolution is controlled by the

transverse component (Wu et al. 1999a, b). In general,

the transverse part is highly reduced in the region of

space where the vorticity is concentrated (Shtilman

1992).

2.2 The Burgers vortex

The Burgers (Gaussian) vortex is a convenient model

to derive the hydrodynamic charge of a typical single

vortex. For comparison, in a Rankine vortex the Lamb

field is discontinuous at the edge of the core and the

charge diverges. We assume open cell, meaning that

the characteristic radius of the Burgers vortex core,

r = a, is much smaller than the cell radius. If W denotes

the angular speed parameter of the vortex, the fields

are expressed as follows (m is the kinematic viscosity)

(Wu et al. 2005):

u:er ¼ �
2m
a2

r

u:eh ¼ X
a2

r
1� e�

r2

a2

� �

u:ez ¼
4m
a2

z

w ¼ 2Xe�r2=a2

ez

l ¼ l== þ l? ¼ wez � urer þ uhehð Þ ¼ �wuher þ wureh

qH ¼ r:l ¼ �4X2e�r2=a2ð2e�r2=a2 � 1Þ

The hydrodynamic charge is negative inside the core

and is balanced mostly by a positive charge near the

edge of the core around r ~ a (see below for the

comparison with experiments). Strictly speaking,

the hydromagnetic charge is negative for (r/a)2 < ln 2

and positive for (r/a)2 > ln 2. For comparison, the

Rankine vortex has a rigid rotation core inside which

�.l = – 4W2 and at the edge of the core, there is an

opposite delta function charge distribution. In any

case, one expects the total charge per unit height

(Dz = 1) to vanish over the plane:

Dq ¼
Z1

0

qH2prdr ¼ 0

Hence, the charge is truly a topological feature of the

flow if we remind that topology is, by definition, the

study of those properties of geometric forms that re-

main invariant under certain transformations. The total

charge of a vortex is constant. We were able to display a

new invariant quantity in the theory of fluid mechanics

like, for example, the helicity for a perfect flow.
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In the rest of the paper we study experimentally a

Burgers vortex. From particles images velocimetry

(PIV) measurements we extract the Lamb vector field

and compute the hydrodynamic charge. Then, we

implement a numerical Helmholtz–Hodge decompo-

sition of the associated Lamb vector field.

3 Experimental measurements

The setup consists of a single stirring rod of 40 mm

diameter, 110 mm in length, rotating at the bottom of a

water cell. The cell is cylindrical with 290 mm inside

diameter and 350 mm height, and closed from above

by a transparent perspex plate in complete contact with

the water. The tip of the rod is trimmed as a four-blade

stirrer extending to the diameter of the rod where the

blades are flat 3 mm thick and 20 mm high (see Fig. 1).

The measured flow was produced with rod rotation

speed of seven rounds per second.

The flow is measured by particle image velocimetry

(PIV) at the plane 45 mm above the rotating tip using

2 mm thick light sheet from a double pulse laser

(SoloPIV 532 nm from New-wave research). The sep-

aration time between pulses is fixed at 1 ms. A double

frame camera of 1 Mpx is located above the cell. The

analysis program is based on multipass correlation

algorithm, written by Enrico Segre. The resulting

instantaneous velocity field is determined on 80 · 80

vector grid. The velocity fields were acquired at a rate

of 4 Hz during 38 s.

From the PIV measurements, one infers the velocity

field and computes the radial profile of the azimuthal

velocity field (Fig. 2a, b). The fitted parameters

according to the Burgers model are W = 86 rad/s, and

a = 9.2 mm. For all plots, the scaling is linear and

the pictures are averaged over all acquired images.

Without averaging, the plots are very similar. We used

averaging in order to smooth the data for computation

purposes especially for the Helmholtz decomposition.

The error bars in Fig. 2b, d, and f are based on a

comparison with similar results of another set of

measurements (performed at 480 rpm rotation speed,

with velocities scaled according to the rotation speed

difference by 540/480). The vertical vorticity shown in

Fig. 2c and d is deduced from the velocity field. The

hydrodynamic charge is displayed in Fig. 2e and f. One

notices that the negative core is surrounded by a

positive annulus of charge that decays farther outside

to zero similarly to the Lamb vector. However, the

total charge in the frame integrates to an average

charge of about –200 l/s2. The charge is completely

balanced only at the wall of the cell, due to a circula-

tion residue. Despite the fact that the structure of the

vortex bears ressemblance with the Burgers vortex, the

tail of the vortex cannot look like the one in an infinite

open space.

The radial profiles of the vorticity and the charge

compare reasonably with the calculations of the

Burgers vortex with the same parameters as above.

The apparent deviations between experiment and

theory in Fig. 2f can be explained by viscous effects,

which tend to smooth out the velocity profile hence all

derived quantities like the Lamb vector and the charge

especially at the outer edge of the vortex where the

velocity reaches a maximum. Moreover, the center of

the vortex is not fixed so, in each frame, the radial

profile is determined with different reference points.

Possibly, the advection of vorticity is not left without

trace and part of the coherence of the structure is de-

stroyed either by the sampling average or by a

dynamical mechanism in the flow. This means that the

local charge is smoothed in the center and does not

display an ideal vortex structure.

Fig. 1 (Experimental vortex)
a snapshot of the divergence-
free part of the Lamb vector
and the rotating rod tip that
may explain the peculiar
symmetry
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4 Discrete Helmholtz–Hodge decomposition

As mentioned above, we use the Helmholtz–Hodge

decomposition to separate the Lamb vector into an

irrotational and a solenoidal part. The decomposition

is implemented in a way similar to Tong et al. (2003).

The discrete Helmholtz–Hodge decomposition of the

Lamb vector l tries to mimic the smooth decomposition

described by l = d + r + h = �D + � · R + h. Here d

and r are the irrotational and the solenoidal part

respectively. The so-called harmonic part h is both

irrotational and solenoidal. As in 2D the curl is not a

vector we have to rewrite the decomposition for 2D as

l = d + r + h = �D + J� R +h where J� is the co-gra-

dient and J rotates every vector by 90� in counter clock-

wise order (see Polthier and Preuß 2002). One easily

verifies that the divergence of r = J� R vanishes and

thus r is solenoidal in the two dimensional case too. The

harmonic part can be added to d or r without changing

their main characteristic (solenoidal / irrotational). Thus

the decomposition can be written as previously:

l = d¢ + r¢ = �a + � · b.

In the smooth case �D and � · R correspond to

projections of l onto the spaces of curl-free resp.

divergence-free vector fields. Such projections can be

achieved by minimizing the following functionals:

FðDÞ ¼ 1

2

Z
T

ðrD� lÞ2dV

GðRÞ ¼ 1

2

Z
T

ðJrR� lÞ2dV

Fig. 2 (Colour online):
(experimental vortex)
a Velocity field and its LIC
visualisation (LIC is the line
integral convolution), b radial
profile of the azimuthal
velocity, c vertical vorticity
(in s–1), d radial profile of the
vertical vorticity, e planar
Lamb vector and planar
hydrodynamic charge (in s–2),
f radial profile of the
hydrodynamic charge. The
profile fits are based on the
Burger model. Error bars are
displayed in red
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Trying to mimic the smooth case, the two potentials D

and R are derived by projections in the discrete case

too; see Tong et al. (2003) for details. Discretization of

the above equations leads to a sparse linear system for

each potential. To guarantee unique solutions,

boundary conditions have to be specified. We follow

Tong and choose the boundaries of the potentials to be

zero. With this choice d is orthogonal to the boundary

and r is tangential to it.1 To solve the sparse systems,

we employ a standard conjugate gradient method. The

solution vectors contain the values of the potentials for

each point. Computing the gradient and the co-gradi-

ent respectively yields the desired components of the

field l.

Since the decomposition is a global variational ap-

proach and as the potentials are computed by inte-

grated values, the decomposition has smoothing effects

on the results. This is valuable as we are working with

measured data.

For all plots in Fig. 3, the streamlines associated to

each type of vector are started at randomly distributed

points. The Lamb streamlines are emitted from the

centre of the vortex. If the Lamb vector was only a

gradient the streamlines should be star-like. However,

we notice for our experimental vortex a small spiralling

behaviour. Hence, we infer the presence of, at least, a

transverse part of the Lamb vector, which indeed looks

like a four-leaved clover, which reminds us the sym-

metry of the stirrer (Fig. 1). In addition, both the

divergence-free and the harmonic part of the Lamb

vector are asymmetric.

The spiralling behaviour is due to the presence of

the radial and vertical components of the velocity,

which do create a transverse component of the Lamb

vector. Quoting Saffman (1992, p. 47): ‘‘ If in a steady

flow, l is not the gradient of a single valued scalar,

which can be absorbed in the pressure, then an external

body force must be applied to maintain equilibrium’’.

In the present experiment, this is the spinning axis and

propeller. The motion is accompanied by a radial and

an axial velocity. We checked experimentally using the

Burgers model that the azimuthal component of the

Lamb vector is very small compared to its radial part

as the former one is proportional to the kinematic

viscosity:

Fig. 3 (Experimental vortex)
a Planar Lamb vector field
and its streamlines,
b divergence-free part of the
Lamb vector, c vorticity free
part of the Lamb vector,
d harmonic part of the Lamb
vector

1 To avoid confusion, note that all figures show only a cut-out of
the whole field. The boundary is not shown.

Exp Fluids

123



l== ¼ �
2X2a2

r
e�r2=a2

1� e�r2=a2
� �

er >>

l? ¼ �
4mX
a2

e�r2=a2

reh

5 Criteria for detection of the vortex centre

In order to compare the criterion based on the Lamb

vector and the hydrodynamic charge (see Fig. 2e, f)

with one of the considered before criteria, namely Q-

criterion, let us first relate these two criteria. Indeed,

the hydrodynamic charge can be easily computed with

the gradient of the kinetic energy and the Q-criterion

via the following expressions:

r:l ¼ �r2 p

q
þ u2

2

� �
¼ �2Q � r2 u2

2

� �
¼ qH

hence:

Q ¼ � 1

2
qH þ r2 u2

2

� �� �

The vortex cores are usually characterized by strong

positive values of Q (as the pressure reaches a mini-

mum in the centre) and we can identify the vortex

cores as the circular regions with positive Q around a

peak of vorticity. As discussed previously, the hydro-

dynamic charge takes into account both the influence

of pressure (Q) and the influence of velocity. Indeed,

the vortex centre corresponds to a local minimum of

these two quantities. The Q-criterion captures only

minima of pressure. Hence, the hydrodynamic charge

is a kind of modified Q-criterion that takes into ac-

count also the influence of the kinetic energy.

In Fig. 4a, we superimposed visualizations of the

Lamb vector and the hydrodynamic charge fields. This

image actually reproduces the same data and in the

same form which is shown in Fig. 2e but obtained by a

different numerical procedure via a discrete Helm-

holtz–Hodge decomposition. Figure 4b presents the

following data: the color and color-bar visualize

the field of div(grad(u/2)), the scaled arrows show

grad(u/2), the line integral convolution (LIC) in the

background shows the structure of grad(u/2), the dots

with the white lines show the topology of grad(u/2).

The red squares are saddle points and the black

squares are sinks. Both are zeros of the vector field

displayed. In Fig. 4c, the Q-criterion is presented. One

can learn from the images that the hydrodynamic

charge and the Lamb vector fields characterize the

vortex in the clearest way.

Fig. 4 (Color online): (experimental vortex) a Hydrodynamic
charge, b gradient of the kinetic energy, c Q-criterion = Lapla-
cian of the pressure
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6 Vortex dynamics characterization

An immediate and useful application of the Lamb

vector and hydrodynamic charge concepts is to study

the dynamics of coherent structures in a turbulent flow.

As an example, we examined first movies of PIV

images by using the divergence-free (solenoidal) part

and rotational-free part of the Lamb vector field and

found a clear episode pattern. Ordinarily, in the rota-

tional-free part we observe a cloud of vectors pointing

towards the centre of the vortex (the direction does not

change in either rotation direction of the vortex). Only

occasionally we observe events when the vortex breaks

into separate hydrodynamic charges. A cloud emerges

with outward pointing vectors beside the inward

pointing vectors cloud, but in the next frame the or-

dinary situation is recovered (see Fig. 5). In the sole-

noidal picture of such events, we observe disturbances

with high magnitudes.

In order to identify numerically the occurrence of

special events, we describe two results of analysis by

intuitive names as the ‘‘polarity’’ and the ‘‘EMF’’

(electro-motive force). The polarity is the difference

between the maximal positive charge and the maximal

negative charge observed in the frame (the charge is

the divergence of the rotational-free part of the Lamb

vector). The EMF is the net value of the solenoidal

part of the Lamb vector, presented as the magnitude of

the averaged vector over the entire frame. As we have

shown for a single eddy, the solenoidal part of the

Lamb vector is related to the time derivative of the

global vorticity (that is analogous to the time derivative

of a magnetic flux that produces EMF). The vorticity is

summed to zero in a large enough fluid volume. In this

case, the total circulation around the cell must be zero,

and the wall of the cell provides a part of the negative

vorticity. We do not include the wall in the analysis

frame in the same way that one does not include

magnetic flux outside a coil in its EMF calculation.

Accordingly in Fig. 6, we show the trajectory of the

vortex centre in x-y coordinates (which determination

is based on the Lamb vector and the hydrodynamic

charge criterion), the polarity and the EMF (in arbi-

trary units) versus time. Clearly, there are specific

events that are identified by peaks in both the polarity

and EMF plots. For example, the episode shown in

Fig. 5 relates to the first peak at t = 0.75 s. In addition,

there is a correlation between the peaks and abrupt

changes in the course of the vortex trajectory, as

marked by arrows in the Fig. 6. One can also notice

that large EMF peaks predict large instability of the

trajectory (indicated by larger displacements). This

analysis demonstrates the usefulness of the approach to

identify the vortex core and to provide detail infor-

mations about the dynamics of coherent structures that

has been unavailable before.

7 Conclusions and perspectives

In this paper we demonstrate the usefulness and effec-

tiveness of the concepts of the Lamb vector and the

Fig. 5 (Experimental vortex) a typical episode of spontaneous
disturbances in the vortex shape and course as observed in the
irrotational part of the Lamb vector (t = 0.5, 0.75, 1 s)
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hydrodynamic charge to locate and characterize

coherent structures such as a vortex on the experimental

data. In addition, the topology of the Lamb vector seems

also to be a rather robust indicator for the presence of

coherent structures particularly by applying the Helm-

holtz–Hodge decomposition. We have shown that the

total charge is conserved both for the Rankine and the

Burger vortices, which are canonical examples of model

for coherent structures. The hydrodynamic charge cri-

terion was compared with the so-called Q criterion and

includes in addition to pressure effects, velocity effects

in the localization of coherent structures.

However, the scope of our results is limited as one

needs to confirm such indications for more complicated

situations such as described in the numerical simula-

tions of Kollmann for a swirling jet in 3D (Kollmann

and Umont 2004, Kollmann 2006). From the experi-

mental point of view, 3D-PIV seems to be a good

candidate in order to explore more deeply the role of

the Lamb vector and its divergence in our under-

standing of coherent structures in turbulence.
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