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Abstract. We determine the parametric hull of a given volume which minimizes
the total water resistance for a given speed of the ship. The total resistance is
the sum of Michell’s wave resistance and of the viscous resistance, approximated
by assuming a constant viscous drag coefficient. We prove that the optimized
hull exists, is unique, symmetric, smooth and that it depends continuously on the
speed. Numerical simulations show the efficiency of the approach, and complete
the theoretical results.
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1. Introduction

The resistance of water to the motion of a ship is traditionally represented as the
sum of two terms, the wave resistance and the viscous resistance (which corresponds
itself to the sum of the frictional and eddy resistance). Michell’s thin-ship theory [23,
24] provides an explicit formula of the wave resistance for a given speed and for a
hull expressed in parametric form, with parameters in the region of the plane of
symmetry. It is therefore a natural question to search the hull of a given volume
which minimizes Michell’s wave resistance for a given speed. Unfortunately, this
problem is known to be ill-posed [18, 33]: it is underdetermined, so that additional
constraints should be imposed in order to provide a solution. The latter approach has
been successfully performed by several authors, from a theoretical and computational
point of view, starting in the 1930’s with Weinblum (see [35] and references in [18]),
Pavlenko [28], until more recently [6, 8, 10, 12, 13, 21].

In this paper, instead of using Michell’s formula alone as an optimization criterion,
we propose to use the total resistance, by adding to Michell’s wave resistance a
term approximating the viscous resistance; this term is obtained by assuming a
constant viscous drag coefficient in the framework of the thin-ship approximation.
Our approach, which results in quadratic programming, has already been considered
from a numerical point of view in [19]. From a theoretical point of view, a similar
approach has been made in [22], but the additional term was more complexe to deal
with, and the analysis was therefore incomplete.

Here, we prove that minimizing this total resistance for a given speed, among the
parametric hulls having a fixed volume and a fixed domain of parameters, is a well-
posed problem. We also prove that the optimized hull is a smooth and symmetric
form, which depends continuously on the speed. Our theoretical results also include
the case where Michell’s wave resistance for an infinite fluid is replaced by Sretensky’s
formula in an infinitely deep and laterally confined fluid [33]. For the numerical
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simulations, made with the Scilab software1, we use an efficient Q1 finite element
discretization of the problem (use of “tent functions”). We recover results similar
to those in [19]; in particular, for moderate values of the velocity, we obtain the
famous bulbous bow which reduces the wave resistance [14, 18]. In addition, we give
numerical evidence that using Michell’s wave resistance as an optimization criterion
results in an ill-posed problem, and we obtain a theoretical lower bound on the
degrees of freedom that should be used in order to minimize efficiently the wave
resistance.

Of course, nowadays, computational fluid dynamics (CFD) provide more precise
tools for ship hull optimization (see, for instance, [11, 25, 27, 29, 31, 36]). How-
ever, in spite of its well-known limitations (see [6] for a review of these limitations),
Michell’s formula for the wave resistance remains a powerful tool for theoretical and
computational purposes. The simplicity of our formulation allows us to obtain the-
oretical results which are at the present moment out of reach when considering the
full 3-dimensional incompressible Navier-Stokes equations. Moreover, our numerical
approach is much faster than standard CFD computations.

The optimization problem is formulated in Section 2. Well-posedness and related
theoretical results are proved in Section 3. Numerical methods are explained in
Section 4, and the numerical results are given and commented in Section 5.

2. Formulation of the optimization problem

Consider a ship moving with constant velocity on the surface of an unbounded
fluid. A coordinated system fixed with respect to the ship is introduced. The origin
is located at midship in the center line plane, the xy-plane is the undisturbed water
surface, the positive x-axis is in the direction of motion and the z-axis is vertically
downward.

The hull is assumed to be symmetric with respect to the vertical xz-plane, with
length L and draft T . The immerged hull surface is represented by a continuous
nonnegative function

y = f(x, z) ≥ 0, x ∈ [−L/2, L/2], z ∈ [0, T ],

with f(±L/2, z) = 0 (for all z) and f(x, T ) = 0 (for all x).
It is assumed that the fluid is incompressible, inviscid and that the flow is irrota-

tional. The effects of surface tension are neglected. The motion has persisted long
enough so that a steady state has been reached. Michell’s theory [23] shows that the
wave resistance can be computed by

RMichell =
4ρg2

πU2

∫ ∞
1

(I(λ)2 + J(λ)2)
λ2

√
λ2 − 1

dλ, (2.1)

with

I(λ) =

∫ L/2

−L/2

∫ T

0

∂f(x, z)

∂x
exp

(
−λ

2gz

U2

)
cos

(
λgx

U2

)
dxdz, (2.2)

J(λ) =

∫ L/2

−L/2

∫ T

0

∂f(x, z)

∂x
exp

(
−λ

2gz

U2

)
sin

(
λgx

U2

)
dxdz. (2.3)

Here, U (in m · s−1) is the speed of the ship, ρ (in kg ·m−3) is the (constant) density
of the fluid, and g (in m · s−2) is the standard gravity. The double integrals I(λ)

1Scilab is freely available at http://www.scilab.org/
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and J(λ) are in m2, and RMichell (in Newton) has the dimension of a force. The
integration parameter λ has no dimension: it can be interpreted as λ = 1/ cos θ,
where θ is the angle at which the wave is propagating [9].

In order to derive formula (2.1), Michell used a linear theory and made additional
assumptions known as the “thin ship theory” (see [24] for details). In particular, it
is assumed that the angles made by the hull surface with the longitudinal plane of
symmetry are small, i.e.

|∂xf | � 1 and |∂zf | � 1 in [−L/2, L/2]× [0, T ]. (2.4)

For simplicity, we define

v = g/U2 > 0 and Tf (v, λ) = I(λ)− iJ(λ),

where I and J are given by (2.2)-(2.3). Then

Tf (v, λ) =

∫ L/2

−L/2

∫ T

0
∂xf(x, z)e−λ

2vze−iλvxdxdz, (2.5)

and RMichell can be written

R(v, f) =
4ρgv

π

∫ ∞
1
|Tf (v, λ)|2 λ2

√
λ2 − 1

dλ. (2.6)

The number v (in m−1) is known as the Kelvin wave number for the transverse waves
in deep water [15]. Notice that ρ and g are fixed, so R depends only on v, i.e. the
speed U , and on f , i.e. the form of the hull.

In view of numerical computations, we let Λ � 1 denote a real number and we
replace R(v, f) by the functional

(v, f) 7→ 4ρgv

π

∫ Λ

1
|Tf (v, λ)|2 λ2

√
λ2 − 1

dλ. (2.7)

For the numerical computation, we actually use a numerical integration formula of
the form

4ρgv

π

∫ Λ

1
|Tf (v, λ)|2 λ2

√
λ2 − 1

dλ ≈ 4ρgv

π

J?∑
j=1

ωj |Tf (v, λj)|2 , (2.8)

with positive weights ωj > 0, and with nodes λj ∈ [1,Λ], j = 1, 2, . . . , J?, where J?

is a well-chosen positive integer (see (4.35)).
In order to take into account the two formulations (2.7) and (2.8) in our analysis,

we consider more generally a wave resistance of the form

RΛ(v, f) =
4ρgv

π

∫ Λ

1
|Tf (v, λ)|2 dµ(λ), (2.9)

where µ is a nonnegative and finite borelian measure on [1,Λ]. Such a formulation
also includes (a truncation of) Sretensky’s summation formula for the wave resistance
of a thin ship in a laterally confined and infinitely deep fluid [33].

We point out that our well-posedness result holds also for the functional R(v, f)
defined by (2.6) or for Sretensky’s formula [33] (see Remark 3.2), but otherwise,

setting Λ < ∞ simplifies the analysis, because the integral
∫∞

1 λ2(λ2 − 1)−1/2dλ
diverges at ∞.
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Let us turn now to the term representing the viscous resistance, or viscous drag [26].
It reads

Rdrag =
1

2
ρU2CdA ,

where Cd is the viscous drag coefficient (which at some extent can be considered
constant within the family of slender bodies), and A is the surface area of the ship’s
wetted hull. When the graph of f represents the ship’s hull, A is given by:

A = 2

∫
Ω

√
1 + |∇f(x, z)|2 dxdz , (2.10)

where here and below, Ω = (−L/2, L/2)×(0, T ). When the ship is slender (i.e. |∇f |
uniformly small, see (2.4)), one can give a good approximation of the above integral

by performing a Taylor expansion of
√

1 + |∇f |2 at first order, for small values of
|∇f |2:

A/2 = 1 +
1

2

∫
Ω
|∇f(x, z)|2 dxdz + o(||∇f ||∞) . (2.11)

The approximation of the viscous drag for small ∇f then reads:

Rdrag = ρU2Cd

(
1 +

1

2

∫
Ω
|∇f(x, z)|2 dxdz

)
.

Minimizing Rdrag is the same as minimizing the following quantity:

R∗drag =
1

2
ρU2Cd

∫
Ω
|∇f(x, z)|2 dxdz .

By setting

ε =
1

2
ρU2Cd, (2.12)

we obtain

R∗drag = ε

∫
Ω
|∇f(x, z)|2 dxdz .

The parameter ε (in Pa) is positive; it can be interpreted as a dynamical pressure,
as in Bernoulli’s law.

The total water resistance functional NΛ,ε(v, ·) is the sum of the wave resistance
and of the viscous drag R?drag:

NΛ,ε(v, f) := RΛ(v, f) + ε

∫
Ω
|∇f(x, z)|2dxdz,

where RΛ is defined by (2.9). We will minimize NΛ,ε(v, ·), among admissible func-
tions. Notice that the additional term

∫
Ω |∇f(x, z)|2dxdz is isotropic, i.e. that no

direction is priviledge in the (x, z) plane. This term guarantees that the deriva-
tives of a minimizer f are defined in the space L2(Ω) of square integrable function.
Since we seek a minimizer, the additional term is small, thus fulfilling the thin ship
assumptions (2.4) in an integral sense (rather than pointwise).

The function space is now clear from the additional term, and we therefore intro-
duce the space

H =
{
f ∈ H1(Ω) : f(±L/2, ·) = 0 and f(·, T ) = 0 in the sense of traces

}
,
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where H1(Ω) denotes the standard L2-Sobolev space (see, for instance, [4]). H is a
closed subspace of H1(Ω), so it is a Hilbert space for the standard H1(Ω)-norm. We
recall that

f 7→
∫

Ω
|∇f(x, z)|2dxdz

is a norm on H, which is equivalent to the standard H1(Ω)-norm [4]. This is due to
the boundary values imposed in the definition of H.

Let V > 0 be the (half-)volume of an immerged hull. The set of admissible
functions is the closed convex subset of H defined by

CV =

{
f ∈ H :

∫
Ω
f(x, z)dxdz = V and f ≥ 0 a.e. in Ω

}
.

Our optimization problem PΛ,ε reads: for a given Kelvin wave number v and
for a given volume V > 0, find the function f? which minimizes NΛ,ε(v, f) among
functions f ∈ CV .

3. Resolution of the optimization problem

3.1. Well-posedness of the problem. Unless otherwise stated, the parameters
ρ > 0, g > 0, V > 0, Λ > 0, v > 0 and ε > 0 are fixed. We have:

Theorem 3.1. Problem PΛ,ε has a unique solution f ε,v ∈ CV . Moreover, f ε,v is
even with respect to x.

Proof. The Hilbertian norm f 7→ NΛ,ε(v, f) is strictly convex on H, because f 7→
RΛ(v, f) is convex and f 7→

∫
Ω |∇f(x, z)|2dxdz is strictly convex. Since the set CV

is convex, any minimizer is unique.
Let now (fn) be a minimizing sequence in CV . Then (fn) is bounded in H, and we

can extract a subsequence, still denoted (fn), such that fn converges weakly in H to
some f . Since CV is a convex set which is closed for the strong topology, CV is also
closed for the weak topology (see, e.g., [4]), so f belongs to CV . Since ∂xfn → ∂xf
weakly in L2(Ω), Tfn(v, λ)→ Tf (v, λ) for every λ > 0. Thus, by Fatou’s lemma,

RΛ(v, f) ≤ lim inf
n

RΛ(v, fn).

Moreover, the norm
∫

Ω |∇·| is lower semi-continuous for the weak H1-topology. This
implies that

NΛ,ε(v, f) ≤ lim inf
n

NΛ,ε(v, fn),

and this shows the minimality of f .
Next, we prove that the minimizer f is even with respect to x. For a function

h ∈ H, let ȟ be the function in H defined by ȟ(x, z) = h(−x, z) a.e. We notice that
if h ∈ CV , then ȟ ∈ CV . It is also easily seen that RΛ(v, ȟ) = RΛ(v, h) for all h ∈ H
(use definitions (2.2)-(2.3) and a change of variable x→ −x). Thus f̌ is a function in
CV such that NΛ,ε(v, f̌) = NΛ,ε(v, f). By uniqueness of the minimizer, f̌ = f . �

Remark 3.2. This well-posedness result and its proof are also valid if one uses
Michell’s wave resistance R(v, f) instead of RΛ(v, f) in the definition of the function
NΛ,ε. A similar statement holds for Sretensky’s wave resistance [33] in a laterally
confined and infinitely deep fluid.
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The following assertion shows that when ε is small, our optimal solution is an
approximate solution to the non-regularized optimization problem, i.e. the problem
of finding a ship with minimal wave resistance.

Proposition 3.3. The minimum value NΛ,ε(v, fε,v) tends to

mΛ,v := inf
f∈CV

RΛ(v, f)

as ε tends to 0.

Proof. Let β > 0. By definition of the infimum, there exists f ∈ CV such that
mΛ,v ≤ RΛ(v, f) < mΛ,v + β. We choose ε0 > 0 small enough so that

ε0

∫
Ω
|∇f |2 < β.

We have

NΛ,ε0(v, fε0,v) ≤ NΛ,ε0(v, f) ≤ RΛ(v, f) + β.

Thus, for all ε ∈ (0, ε0), we have

mΛ,v < NΛ,ε(v, fε,v) ≤ NΛ,ε(v, fε0,v) ≤ NΛ,ε0(v, fε0,v) ≤ mΛ,v + 2β.

Since β > 0 is arbitrary, the proof is complete. �

3.2. Continuity of the optimum with respect to v. In this section, we prove
that f ε,v changes continuously as the parameter v changes. We first notice:

Proposition 3.4. The linear operator f 7→ (λ 7→ Tf (v, λ)) is bounded from H into
L2([1,Λ], µ).

Proof. By the Cauchy-Schwarz inequality,

|Tf (v, λ)|2 ≤ ‖∂xf‖2L2(Ω)

∫
Ω

e−2λ2vz dxdz

≤ ‖∂xf‖2L2(Ω)

L

2λ2v
. (3.1)

Thus,

‖Tf (v, λ)‖L2([1,Λ],µ) ≤ ‖∂xf‖L2(Ω)

(
L

2v

)1/2

µ([1,Λ])1/2,

and this proves the claim, since µ([1,Λ]) <∞ by assumption (cf. (2.9)). �

In particular, by definition (2.9),

RΛ(v, f) =
4ρgv

π
‖Tf (v, λ)‖2L2([1,Λ],µ) (3.2)

is well defined for all f ∈ H, and f 7→ RΛ(v, f) is a continuous nonnegative quadratic
form on H.

The following result will prove useful:

Lemma 3.5. Let (vn) be a sequence of positive real numbers such that vn → v̄ > 0,
and let (hn) be a sequence in H such that hn → h weakly in H. Then RΛ(vn, hn)→
RΛ(v̄, h).
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Proof. let k(v, λ, x, z) = e−λ
2vz e−iλvx denote the kernel of Tf . By the mean value

inequality, for all λ ∈ [1,Λ], for all x ∈ [−L/2, L/2] and for all z ∈ [0, T ], we have

|k(vn, λ, x, z)− k(v, λ, x, z)| ≤ (Λ2T + ΛL/2)|vn − v|.
Thus,

|Thn(vn, λ)− Thn(v̄, λ)| ≤ (Λ2T + ΛL/2)

∫
Ω
|∂xhn(x, z)|dxdz|vn − v|

≤ (Λ2T + ΛL/2) ‖∂xhn‖L2(Ω) (LT )1/2|vn − v|,

and so Thn(vn, λ)− Thn(v̄, λ)→ 0 (in R) as n→∞. Moreover, for all λ ∈ [1,Λ],

Thn(v̄, λ)− Th(v̄, λ)→ 0

since ∂xhn converges to ∂xh weakly in L2(Ω). We deduce from the triangle inequality
that for all λ ∈ [1,Λ],

Thn(vn, λ)→ Th(v̄, λ).

Estimate (3.1) in the proof of Proposition 3.4 shows that |Thn(vn, λ)| is bounded by
a constant independent of n and λ ∈ [1,Λ]. Since the total measure µ is finite on
[1,Λ], we can apply Lebesgue’s dominated convergence theorem, which yields

‖Thn(vn, λ)‖L2([1,Λ],µ) → ‖Th(v̄, λ)‖L2([1,Λ]),µ) .

The claim follows from (3.2). �

We can now state:

Theorem 3.6. Let v̄ > 0. Then f ε,v converges strongly in H to f ε,v̄ as v → v̄.

Proof. Let (vn) be a sequence of positive real numbers such that vn → v̄. Our goal
is to show that f ε,vn tends to f ε,v̄ strongly in H.

First, we claim that the sequence of functionals (NΛ,ε(vn, ·))n Γ-converges to
NΛ,ε(v̄, ·) for the weak topology in H (see, e.g. [3]). Indeed, let (hn) be a sequence
in H such that hn → h weakly in H. Lemma 3.5 shows that RΛ(vn, hn)→ RΛ(v̄, h).
Using the lower semicontinuity of the norm in H, we deduce that

NΛ,ε(v̄, h) ≤ lim inf
n

NΛ,ε(vn, hn). (3.3)

Moreover, for any h ∈ H, using Lemma 3.5 again, we obtain

NΛ,ε(v̄, h) = lim
n→+∞

NΛ,ε(vn, h). (3.4)

This proves the claim.
Next, we notice that the sequence f ε,vn is bounded in H, since for any choice of

h ∈ CV , we have

ε
ρg

2vn

∫
Ω
|∇f ε,vn |2 ≤ NΛ,ε(vn, f

ε,vn) ≤ NΛ,ε(vn, h),

and the sequence NΛ,ε(vn, h) is bounded by (3.4). Thus, the sequence f ε,vn has an
accumulation point (in CV ) for the weak topology in H; the Γ-convergence result
(which is also valid in CV ) implies that any accumulation point is a minimizer of
NΛ,ε(v̄, ·), i.e. f ε,v̄. Uniqueness of the minimizer implies that the whole sequence
converges weakly in H to f ε,v̄.

Finally, we notice that

NΛ,ε(vn, f
ε,vn) ≤ NΛ,ε(vn, f

ε,v̄),
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and this, together with (3.3) and (3.4), implies that

lim
n→+∞

NΛ,ε(vn, f
ε,vn) = NΛ,ε(v̄, fε,v̄).

As a consequence, by Lemma 3.5, limn→+∞
∫

Ω |∇f
ε,vn |2 =

∫
Ω |∇f

ε,v̄|2, so f ε,vn con-
verges strongly in H to f ε,v̄. This concludes the proof. �

Remark 3.7. If ε is a (strictly) positive and continuous function of v, then a simple
adaptation of the proof above shows that Theorem 3.6 is still valid. This is the case
if ε = Cdρg/(2v) with Cd constant, as in (2.12).

3.3. Regularity of the solution. In this section, we prove the W 2,p regularity of
the solution for all p <∞, by using the regularity of the non-constrained optimization
problem.

As a shortcut, we define

a(u,w) = ε

∫
Ω
∇u · ∇w dxdz (u,w) ∈ H ×H,

so that a is a continuous bilinear form on H; a is also coercive, i.e.

a(u, u) > 0 ∀u ∈ H \ {0},

and the Hilbertian norm a 7→ a(u, u)1/2 is equivalent to the H1-norm on H. Since the
domain Ω is a rectangle, the space H is dense in L2(Ω), and we have the continuous
injections H ↪→ L2(Ω) ↪→ H ′. We can define A the operator from H into H ′ such
that

a(u,w) = 〈Au,w〉 ∀u,w ∈ H, (3.5)

where 〈·, ·〉 denotes the duality product H ′ ×H.
Let finally H+ = {f ∈ H : f ≥ 0 a.e. in Ω} and

k(x, z, x′, z′) =
4ρgv3

π

∫ Λ

1
λ2 cos(λv(x− x′))e−λ2v(z+z′)dµ(λ).

Regularity of a minimizer is a consequence of the Euler-Lagrange equation, which
reads:

Proposition 3.8. The solution f ≡ f ε,v of problem PΛ,ε satisfies the variational
inequality

a(f, h− f) +

∫
Ω

(∫
Ω
k(x, z, x′, z′)f(x′, z′)dx′dz′

)
(h− f)dxdz

≥ C
∫

Ω
(h− f)dxdz ∀h ∈ H+,

for some constant C ∈ R.

Proof. Using the bilinear form a, and performing an integration by parts with respect
to x in formulas (2.2)-(2.3), for h ∈ H, we have

NΛ,ε(h) = a(h, h) +
4ρgv

π

∫ Λ

1
Ih(λ, v)2 + Jh(λ, v)2dµ(λ),

where

Ih(λ, v) = λv

∫
Ω
h(x, z)e−λ

2vz sin(λvx)dxdz,
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Jh(λ, v) = −λv
∫

Ω
h(x, z)e−λ

2vz cos(λvx)dxdz.

Let now h ∈ H+ and set

ϕ(t) = V (f + t(h− f))/(

∫
Ω
f + t(h− f)) t ≥ 0,

so that ϕ(t) ∈ CV for all t ≥ 0 and ϕ(0) = f . Then NΛ,ε(ϕ(t)) ≥ NΛ,ε(f), so

d

dt
NΛ,ε(ϕ(t))|t=0 ≥ 0.

Computing, we have ϕ′(0) = (h− f)− f
∫

Ω(h− f)/V and

d

dt
NΛ,ε(ϕ(t))|t=0 = 2a(f, ϕ′(0))

+
8ρgv

π

∫ Λ

1
If (λ, v)Iϕ′(0)(λ, v) + Jf (λ, v)Jϕ′(0)(λ, v)dµ(λ).

The expected variational inequality is obtained with the constant

C = a(f, f)/V +
4ρgv

πV

∫ Λ

1
If (λ, v)2 + Jf (λ, v)2dµ(λ),

by an application of Fubini’s theorem. �

For sake of completeness, we recall the following classical result which relates the
regularity of the constrained problem to the regularity of the unconstrained problem.
Let C∞c (Ω) denote the space of smooth functions with compact support in Ω, and
let

C∞c (Ω)+ = {ϕ ∈ C∞c (Ω) : ϕ ≥ 0 in Ω}.
We say that two elements w, z ∈ H ′ satisfy w ≥ z if 〈w,ϕ〉 ≥ 〈z, ϕ〉 for all ϕ ∈
C∞c (Ω)+.

Theorem 3.9. Let w ∈ L2(Ω). The solution f ∈ H+ of the variational problem

a(f, h− f) ≥ 〈w, h− f〉 ∀h ∈ H+ (3.6)

satisfies Af ≥ w and w+ ≥ Af , where A is defined by (3.5).

Proof. The first inequality is obtained by choosing h = f + ϕ with ϕ arbitrary in
C∞c (Ω)+. For the second inequality, we consider the solution σ of the following
variational problem:{

σ ∈ H, σ ≤ f
a(σ, h− σ) ≥ 〈w+, h− σ〉 ∀h ∈ H such that h ≤ f.

(3.7)

The existence of σ is standard (see, for instance, [16]). We will prove that

σ = f. (3.8)

Then, choosing h = f − ϕ in (3.7), with ϕ arbitrary in C∞c (Ω)+, we find

a(f,−ϕ) ≥ 〈w+,−ϕ〉,
which is the second expected inequality.

In order to prove (3.8), we first show that σ ≥ 0 a.e. in Ω. Since f ≥ 0 and σ ≤ f ,
we have σ+ ≤ f . We can therefore choose h = σ+ in (3.7), and we obtain

a(σ, σ−) ≥ 〈w+, σ−〉.
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Since a(σ+, σ−) = 0, this implies

−a(σ−, σ−) ≥ 〈w+, σ−〉 ≥ 0,

and so σ− = 0 by coercivity of a.
Thus, σ ≥ 0 a.e. in Ω, and we can choose h = σ in (3.6). This yields

a(f, σ − f) ≥ 〈w, σ − f〉,

and so

a(f − σ, σ − f) ≥ 〈w, σ − f〉+ a(σ, f − σ) ≥ 〈w−, f − σ〉 ≥ 0,

where we used (3.7) with h = f . By coercivity of a again, we obtain (3.8). �

We can now state our regularity result. The space W 2,p(Ω) is the Lp(Ω)-Sobolev
space [4], and C1(Ω) denote the space of functions f which are continuously differ-
entiable in Ω and such that f and ∇f are uniformly continuous in Ω.

Theorem 3.10. The solution f ε,v of problem PΛ,ε belongs to W 2,p(Ω) for all 1 ≤
p <∞. In particular, f ε,v ∈ C1(Ω).

Proof. By Proposition 3.8, the solution f ≡ f ε,v satisfies (3.6) with w defined by

w(x, z) = C −
∫

Ω
k(x, z, x′, z′)f(x′, z′)dx′dz′.

In particular, w belongs to L∞(Ω) with

‖w‖L∞(Ω) ≤ |C|+ ‖k‖L∞(Ω×Ω)|Ω|1/2‖f‖L2(Ω) < +∞,

since

‖k‖L∞(Ω×Ω) ≤
4ρgv3

π

∫ Λ

1
λ2dµ(λ) < +∞.

Thus, by Theorem 3.9, Af = w̃ with w ≤ w̃ ≤ w+, so w̃ ∈ L∞(Ω). We can use
the regularity of the Laplacian on a rectangle with Dirichlet boundary condition
on three sides and Neumann boundary condition on one side (Lemma 4.4.3.1 and
Theorem 4.4.3.7 in [7]): we conclude that the solution f ∈ H of Af = w̃ belongs
to W 2,p(Ω) for all 1 ≤ p < ∞. For p large enough, we have the Sobolev injection
W 2,p(Ω) ⊂ C1(Ω) [1], and this concludes the proof. �

Remark 3.11. The global regularity result obtained in Theorem 3.10 is optimal
because the domain Ω is a rectangle, so that even for the unconstrained problem,
we do not expect a better global regularity in general [7]. However, in the open set
{f ε,v > 0}, the function f ε,v is obviously C∞, by a classical bootstrap argument [4];

otherwise, f ε,v has the C1,1
loc (Ω) regularity which is optimal for obstacle-type prob-

lems [30].

3.4. Three remarks on the limit case ε = 0. In this section, for the reader’s
convenience, we recall three results from [18, chapter 6], which are related to our
minimization problem in the limiting case ε = 0. The first two results are due to
Krein.

We first have:

Proposition 3.12. If the wave resistance RΛ is computed by the integral (2.7), then
for all v > 0 and for all f ∈ CV , RΛ(v, f) > 0.



A DETERMINATION OF OPTIMAL SHIP FORMS 11

Proof. Let v > 0, f ∈ CV and assume by contradiction that RΛ(v, f) = 0. Then
by (2.7), Tf (v, λ) = 0 for every λ ∈ [1,Λ], and by analycity, Tf (v, λ) = 0 for all
λ ∈ R. Integrating by parts with respect to x and using f(−L/2, z) = f(L/2, z) = 0,
we obtain:

0 = Tf (v, λ) = iλv

∫ L/2

−L/2

∫ T

0
f(x, z)e−λ

2vze−iλvxdxdz (λ ∈ R).

Next, we use that the Fourier transform of a Gaussian density is known:∫
R
e−λ

2vz′e−iλvx =

√
π

vz′
e−vx

2/(4z′) (z′ > 0).

We multiply Tf (v, λ) by e−λ
2a with a > 0 and we integrate on R. By changing the

order of integration (which is possible thanks to the new term), we find:

0 =

∫ L/2

−L/2

∫ T

0
f(x, z)

(∫
R
e−λ

2v(z+a)e−iλvxdλ

)
dxdz

=

∫ L/2

−L/2

∫ T

0
f(x, z)

√
π

v(a+ z)
e−vx

2/(4(a+z)dxdz.

This is possible only if f changes sign, hence a contradiction. The result is proved.
�

As pointed out by Krein, in Proposition 3.12, it is essential to assume that the
ship has a finite length. Indeed, there exists a ship of infinite length which has a
zero wave resistance. More precisely, let f(x, z) = g(x)h(z) with

g(x) =
2

π

sin2(ax/2)

ax2

for some a > 0 and where h(z) is arbitrary. Then we have∫
R
g(x)e−iλvxdx =

{
(1− |λ|v/a) if |λ| < a/v,

0 if |λ| ≥ a/v.

On the other hand, integrating by parts with respect to x in the definition of Tf
yields

Tf (v, λ) = iλv

(∫
R
g(x)e−iλvxdx

)(∫
R+

h(z)e−λ
2vzdz

)
.

Thus, choosing a < v yields RΛ(v, f) = 0 when RΛ is defined by (2.9). Such a choice
of g can be thought of as an endless caravan of ships.

Proposition 3.12 requires that f ≥ 0 on Ω. If we relax this assumption, for every
v > 0, it is possible [18] to find f ∈ C∞c (Ω) such that Tf (v, λ) = 0 for all λ. Indeed,
let h ∈ C∞c (Ω) and set f = ∂2

xh + v∂zh. Using several integration by parts and the
identity

(∂2
x − v∂z)

(
e−λ

2vze−iλvx
)

= 0,

we obtain

Tf (v, λ) = iλv

∫ L/2

−L/2

∫ T

0
f(x, z)e−λ

2vze−iλvxdxdz = 0. (3.9)
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This shows that the operator f 7→ Tf (v, ·) is far from being one-to-one, as confirmed
by the numerical simulations (see Section 5.1.2).

4. Numerical methods

In this section, we focus on the discretization of the minimization problem. Recall
that the regularized criterion reads

NΛ,ε(v, f) = RΛ(v, f) + ε

∫
Ω
|∇f(x, z)|2dxdz,

where Λ is taken large enough. The set of constraints will insure the fact that:

• the volume of the (immerged) hull is given:∫
R2

f(x, z)dxdz = V ;

• the hull does not cross the center plane: f(x, z) ≥ 0;
• the hull is contained in a finite domain given by a box Ω = [−L/2, L/2] ×

[0, T ], where: f(−L/2, ·) = f(L/2, ·) = f(·, T ) = 0.

The first constraint is an important one, since if no volume was imposed for the hull,
the optimal solution to our problem would be f = 0, for all target velocities v.

4.1. A Q1 finite element discretization. We adopt here a finite element approach
in the sense that the optimal shape f will be sought in a finite dimensional subspace

V h ⊂ H ⊂ H1(Ω).

We use a cartesian grid which divides the domain Ω = (−L/2, L/2) × (0, T ) into
Nx × Nz small rectangles of size δx × δz, where δx = L/Nx and δz = T/Nz. We
choose to represent the surface with the help of Q1 finite-element functions: for every
node (xi, zi) of the grid, we define the “hat-function”

ei(x, z) =
(x− (xi − δx))(z − (zi − δz))

δxδz
, for (x, z) ∈ [xi − δx, xi]× [zi − δz, zi] ,

ei(x, z) =
((xi + δx)− x)((zi + δz)− z)

δxδz
, for (x, z) ∈ [xi, xi + δx]× [zi, zi + δz] ,

ei(x, z) =
(x− (xi − δx))((zi + δz)− z)

δxδz
, for (x, z) ∈ [xi − δx, xi]× [zi, zi + δz] ,

ei(x, z) =
((xi + δx)− x)(z − (zi − δz))

δxδz
, for (x, z) ∈ [xi, xi + δx]× [zi − δz, zi] ,

ei(x, z) = 0, otherwise. (4.1)

Let us denote :

X+
i = [xi, xi + δx] , (4.2)

X−i = [xi − δz, xi] , (4.3)

Z+
i = [zi, zi + δz] , (4.4)

Z−i = [zi − δz, zi] . (4.5)

We can recast ei in the following manner, which is useful for further calculations:

ei(x, z) =
1

δx δz
ai(x) bi(z) , (4.6)
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where:

ai(x) = ((xi + δx)− x)1X+
i

(x) + (x− (xi − δx))1X−i
(x) , (4.7)

bi(z) = ((zi + δz)− z)1Z+
i

(z) + (z − (zi − δz))1Z−i (z) , (4.8)

where 1A is the indicator function of the set A (which is one in A and zero outside
of A).

In order to set f(−L/2, ·) = f(L/2, ·) = f(·, T ) = 0 once and for all, we only keep
the hat-functions which correspond to interior nodes or to nodes (xi, zi) such that
zi = 0, xi ∈ (−L/2, L/2) (i.e. nodes on the upper side of Ω). These hat-functions
are indexed from 1 to Nint (with Nint = (Nx−1)(Nz−1)) for the interior nodes and
from Nint + 1 to N = Nint +Nx − 1 for the Nx − 1 nodes of the upper side.

The functions {ei(x, z)}i=1...N are a basis of V h, so that the hull surface is repre-
sented by:

f(x, z) =

N∑
i=1

fiei(x, z), (4.9)

This identifies the space V h to RN , and in all the following we will denote F =
(fi)i=1..N the (column) vector in RN corresponding to f(x, z).

The other two constraints described earlier read:

• the volume of the hull is given:

Nint∑
i=1

fi +
1

2

N∑
i=Nint+1

fi = Ṽ ,

where Ṽ = V/(δxδz);
• the hull does not cross the center plane: fi ≥ 0 for i = 1 . . . N .

Remark that, from a geometrical point of view, this set of constraints can be seen
as a (N-1)-dimensional simplex.

4.2. Approximation of the wave resistance. First, let us recall the expression
of Michell’s wave resistance as a function of the hull shape. Since the optimal ship
has to be symmetric with respect to x (see Theorem 3.1), we drop the antisymmetric
contribution I of the hull on the wave resistance:

RMichell =
4ρg2

πU2

∫ Λ

1
J(λ)2 λ2

√
λ2 − 1

dλ,

with

J(λ) =

∫ L/2

−L/2

∫ T

0

∂f(x, z)

∂x
exp

(
−λ

2gz

U2

)
sin

(
λgx

U2

)
dxdz. (4.10)

Integrating by parts in (4.10), and denoting v = g/U2, we obtain the simpler ex-
pression

RMichell =
4ρgv3

π

∫ Λ

1
J̃2(λ)

λ4

√
λ2 − 1

dλ ,

with

J̃(λ) =

∫
R×R+

f(x, z) e−λ
2vz cos(λvx) dxdz , (4.11)



14 JULIEN DAMBRINE, MORGAN PIERRE, AND GERMAIN ROUSSEAUX

Since RMichell is a quadratic form with respect to f , when f is given as (4.9), the
expression of the wave resistance reads

RMichell =
4ρgv3

π
F tMw F , (4.12)

where F t denotes the transpose of the vector F . Simple calculations give us the
N ×N matrix Mw:

Mw =

∫ Λ

1
J (λ)J (λ)t

λ4

√
λ2 − 1

dλ , (4.13)

where J (λ) is the (column) vector of RN given by

(J (λ))i =

∫
R×R+

e−λ
2vz cos(λvx) ei(x, z) dxdz , (4.14)

for i = 1 . . . N . Every basis function ei is the product of a polynomial in x by a
polynomial in z on every one of the cells (see (4.1)), so one can compute exactly the
values of J (λ). Injecting (4.6) into (4.14), we obtain :

(J (λ))i =

∫
R×R+

e−λ
2vz cos(λvx) ai(x) bi(z) dxdz . (4.15)

Hence our integral can be written as a product of two independent integrals:

(J (λ))i =

∫
R

cos(λvx) ai(x) dx

∫
R+

e−λ
2vz bi(z) dz . (4.16)

From (4.7) and (4.8), we remark that each integral is the sum of two terms:∫
R

cos(λvx) ai(x) dx = a+
i + a−i , (4.17)∫

R+

e−λ
2vz bi(z) dz = b+i + b−i , (4.18)

where:

a+
i =

∫ xi+δx

xi

cos(λvx) ((xi + δx)− x) dx , (4.19)

b+i =

∫ zi+δz

zi

e−λ
2vz ((zi + δz)− z) dz , (4.20)

a−i =

∫ xi

xi−δx
cos(λvx) (x− (xi − δx)) dx , (4.21)

b−i =

∫ zi

zi−δz
e−λ

2vz (z − (zi − δz)) dz . (4.22)

Hence our vector J (λ) writes:

(J (λ))i =
1

δx δz
(a+
i + a−i )(b+i + b−i ) . (4.23)
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Elementary yet tedious calculations give us the values for the integrals a+
i , b+i , a−i

and b−i :

a+
i =

1

v2λ3

{
−δx sin(λvxi) +

1

λv
(cos(λvxi)− cos(λv(xi + δx)))

}
, (4.24)

b+i =
1

v2λ3

{
δz e−λ

2vzi − 1

λ2v
(e−λ

2vzi − e−λ2v(zi+δz))

}
, (4.25)

a−i =
1

v2λ3

{
δx sin(λvxi) +

1

λv
(cos(λvxi)− cos(λv(xi − δx)))

}
, (4.26)

b−i =
1

v2λ3

{
−δz e−λ2vzi − 1

λ2v
(e−λ

2vzi − e−λ2v(zi−δz))

}
. (4.27)

Moreover, b−i = 0 if zi = 0.
Let us now describe the method employed to approximate the integral with respect

to λ which appears in (4.13). In [34], Tarafder et. al. described an efficient method
in order to compute this integral. In order to get rid of the singular term for λ = 1,
the integral is transformed in the following manner:

Mw =

∫ Λ

1
J (λ)J (λ)t

λ4

√
λ2 − 1

dλ (4.28)

=

∫ 2

1
J (λ)J (λ)t

λ4

√
λ2 − 1

dλ+

∫ Λ

2
J (λ)J (λ)t

λ4

√
λ2 − 1

dλ (4.29)

= J (1)J (1)t
∫ 2

1

1√
λ2 − 1

dλ+

∫ 2

1

λ4 J (λ)J (λ)t − J (1)J (1)t√
λ2 − 1

dλ

+

∫ Λ

2
J (λ)J (λ)t

λ4

√
λ2 − 1

dλ (4.30)

The first integral can be computed explicitly:

J (1)J (1)t
∫ 2

1

1√
λ2 − 1

dλ = ln(2 +
√

3)J (1)J (1)t . (4.31)

The second integral, which is not singular anymore, is computed with a second order
midpoint approximation formula:∫ 2

1

λ4 J (λ)J (λ)t − J (1)J (1)t√
λ2 − 1

dλ ≈
N0∑
i=1

λ4
i,0 J (λi,0)J (λi,0)t − J (1)J (1)t√

λ2
i,0 − 1

δλ0 ,

(4.32)
where δλ0 = 1/N0 and λi,0 = 1 +

(
i+ 1

2

)
δλ0 (for i = 1,. . . ,N1). Thanks to the

exponential decay of J (λ) when zi > 0 and zi − δz > 0 (see (4.24)-(4.27)), the
function under the third integral has an exponential decay for most values of z.
Therefore, the third integral is cut in intervals of exponentially growing lengths (we
set Λ = 2KΛ):∫ Λ

2
J (λ)J (λ)t

λ4

√
λ2 − 1

dλ =

KΛ−1∑
k=1

∫ 2k+1

2k
J (λ)J (λ)t

λ4

√
λ2 − 1

dλ (4.33)
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On each interval, the integral is computed with a second order midpoint approxima-
tion formula:∫ 2k+1

2k
J (λ)J (λ)t

λ4

√
λ2 − 1

dλ ≈
Nk∑
i=1

J (λi,k)J (λi,k)
t

λ4
i,k√

λ2
i,k − 1

δλk , (4.34)

where: δλk =
2k

Nk
, and λi,k = 2k + (i+ 1

2)δλk for i = 1, . . . , Nk.

Remark 4.1. The integration method with respect to λ described above preserves
the positivity of the operator Mw. From (4.31), (4.32) and (4.34), the approximation
of Mw can be written as:

Mw = ω0J (1)J (1)t +

J?∑
j=1

ωjJ (λj)J (λj)
t (4.35)

where the sequence (λj) contains all the midpoints λi,k described above. It is clear
by construction that ωj > 0 for j ≥ 1. For ω0, the matter is less obvious, and
the positivity is a consequence of the choice we made for the numerical method of
integration. The coefficient ω0 reads

ω0 = ln(2 +
√

3)−
N0∑
i=1

δλ0√
λ2
i,0 − 1

(4.36)

The first term of this difference is the exact integral, and the second term is the
approximate integral. When we deal with the integral of convex functions, the
approximate integral computed with the midpoint approximation is always lower

than the exact integral. Since λ → 1√
λ2 − 1

is convex for λ > 1, we have ω0 > 0.

Hence, Mw is positive (semi-definite, see Figure 3).

4.3. Approximation of the viscous resistance. Let us give the expression of the
additional “viscous drag” term when f is given by (4.9):∫

Ω
|∇f |2 = (∇f , ∇f)L2 (4.37)

= (

N∑
i=1

fi∇ei ,
N∑
i=1

fi∇ei)L2 (4.38)

=

N∑
i,j=1

fi fj(∇ei ,∇ej)L2 (4.39)

The computation of the matrix Md = (∇ei ,∇ej)L2 is standard [20]. This matrix is
nondiagonal, symmetric positive definite.

4.4. Method of optimization. From (4.12) and (4.39), we can recast the opti-
mization problem as finding F ∗ which solves

F ∗ = argmin
F∈KṼ

{
F t (

4ρgv3

π
Mw + εMd)F

}
, (4.40)
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where

KṼ =

F = (fi)1≤i≤N ∈ RN : F ≥ 0 and

Nint∑
i=1

fi +
1

2

N∑
i=Nint+1

fi = Ṽ

 .

(4.41)
This problem can be reformulated as finding the saddle point (F ∗, λ∗1, λ

∗
2) ∈ RN ×

(R−)N × R for the following Lagrangian:

L(F, λ1, λ2) = F t (
4ρgv3

π
Mw + εMd)F + λt1F +

(
N∑
i=1

αifi − Ṽ

)
λ2, (4.42)

where αi = 1 for i ∈ {1, . . . , Nint} and αi = 1/2 otherwise.
The method we used in order to find this saddle point is the Uzawa algorithm [5].

Given (Fn, λn1 , λ
n
2 ), we find (Fn+1, λn+1

1 , λn+1
2 ) in the following manner:

• First, we obtain Fn+1 by minimizing L(F, λn1 , λ
n
2 ) with respect to F in RN ,

which is equivalent to:

Fn+1 = ((
4ρgv3

π
Mw + εMd)

−1(λ1 + λ2) , (4.43)

• then we iterate on the Lagrange multipliers with:

λn+1
1 = P(R−)N (λn1 + δr1 F ) , (4.44)

λn+1
2 = λn2 + δr2

(
N∑
i=1

αifi − Ṽ

)
, (4.45)

where P(R−)N denotes the projection on (R−)N , δr1 and δr2 are steps that
have to be taken small enough in order to insure convergence, and large
enough in order to insure fast convergence.

When this algorithm has converged (i.e. (Fn+1 − Fn, λn+1
1 − λn1 , λ

n+1
2 − λn2 ) small

enough for some norm), the saddle point is reached.

5. Numerical results and their interpretation

In this section, we perform hull optimization with the method described above.
We first describe the necessity of adding a coercive term in our optimization criterion,
and then we give some optimized hulls obtained for moderate Froude numbers.

We used the following set of parameters, which could correspond to an experiment
in a towing basin: ρ = 1000 kg · m−3, g = 9.81 m · s−2, L = 2 m, T = 20 cm,
V = 0.03 m3.

The space discretization parameters are Nx = 100 and Nz = 20 (except in Figure 3
where Nx = 100 and Nz = 30). These values are taken as a compromise between the
computational cost and the accuracy we seek. We remark that since Mw is obtained
as the product of two vectors with Nx×Nz entries, this matrix is a full matrix with
(Nx × Nz)

2 non-zero entries. this means that the memory cost is O((Nx × Nz)
2)

(instead of O(Nx ×Nz) for a sparse problem).

We remind that Ṽ = V/(δxδz) with δx = L/Nx and δz = T/Nz. The parameters
N0, . . . , NKΛ

used in the numerical integration (see (4.32)-(4.34)) are all equal to
80. The integer KΛ is determined by a stopping criterion (KΛ is generally around
10).
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The velocity is given by the length Froude number:

Fr =
U√
gL

, (5.1)

and we remind that in our notations, v = g/U2. Our Q1 discretized wave resistance
formula (4.12) has been validated by comparison to some tabulated results obtained
by Kirsch [17] for a hull of longitudinal parabolic shape with a rectangular cross-
section (rectangular Wigley hull). We used the Scilab software for the computations
and the Matlab2 software for the figures.

5.1. Degenerate nature of the wave resistance criterion for optimization.

5.1.1. Letting ε tend to 0. Let us examine the numerical results of the optimization
problem:

F ∗ = argmin
F∈KṼ

{
F t (

4ρgv3

π
Mw + εMd)F

}
, (5.2)

for smaller and smaller values of ε, with Fr = 1. In Figure 1 we notice that, as ε gets
small (ε is expressed in Pa), the optimized hull does not seem to converge towards
a limit. In fact most of the hull’s volume tends to accumulate on the edges of the
domain boundaries, where f = 0 is imposed.

ε=0.01
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Figure 1. Color maps of the optimized hull function f(x, z) for
smaller and smaller values of ε.

Note that this phenomenon is very similar to a boundary layer phenomenon. Let us
take the characteristic width of the boundary layer as the distance between the left
border of the domain and the center of mass (x̄, ȳ) of the half hull.

2http://www.mathworks.fr/
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Figure 2. Characteristic width of the boundary layer as a function of ε.

The characteristic width of the boundary layer (see Figure 2) seems to fit a law of
the type

Lcarac(ε) ∼ ε0.15 . (5.3)

This phenomenon suggests that the optimization problem PΛ,ε is ill-posed when
ε = 0.

Remark 5.1. In finite dimension, the problem

F ? ∈ argminF∈KṼ
F tMw F

has at least one solution, because KṼ , being a simplex, is a compact subset of RN .
The existence of such a solution is due to the discretization.

5.1.2. About the eigenvalues of Mw (numerics). Let us consider once again (for a
fixed v > 0) the operator f 7→ Tf (v, ·) (see (2.5)) which appears in the definition

of RΛ(v, f) (2.9). We have seen that Tf is not invertible (cf. (3.9)). This (linear)
operator transforms a function of two variables, f(x, z), into a function of one vari-
able, λ. Roughly speaking, we “loose” one dimension in the process, and this is the
reason why the wave resistance RΛ alone is not suited for minimization.

This is confirmed by numerical computation of the eigenvalues of the matrix Mw

(see Figure 3, where the Froude number is equal to 1). Since Mw is symmetric,
up to a change of orthonormal basis, Mw is equal to a diagonal matrix formed
with its eigenvalues. Recall now that Mw represents (up to a constant factor) the
restriction of RΛ to the space V h (we omit here the fact that Mw contains only the
cosin term). In Figure 3, Nx = 100 and Nz = 30, so there are N ≈ 3000 degrees
of freedom, but there are less than 200 positive eigenvalues (for an index i ≥ 200,
the eigenvalue satisfies |λi| < 10−15, which is the double precision accuracy; for
i ≥ 1600, we have λi = 0 up to computer accuracy, so that λi is not represented
in the logarithmic scale). Corollary 5.3 below provides a theoretical lower bound
(Nx − 1 = 99) concerning the number of positive eigenvalues.

In other words, Figure 3 shows that only a few degrees of freedom are necessary
in order to minimize efficiently the wave resistance. In such a case, existence of
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a solution to the minimum wave resistance problem is a consequence of the dis-
cretization (see Remark 5.1). This is an approach that has been used by many
authors [6, 8, 10, 12, 13, 18, 22, 28, 35]. In contrast, with our approach, we do not
need to impose “a priori” the set of parameters: the interesting degrees of freedom
are selected when minimizing the total resistance.

5.1.3. About the eigenvalues of Mw (analysis).
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Figure 3. Eigenvalues of Mw

Here, we provide a theoretical lower bound for the number of positive eigenvalues.
First, we notice that the operator Tf can be seen as the composition of a Fourier
transform in x by a modified Laplace transform in z. More precisely, for ϕ ∈ L1(R),
let

Fx(ϕ)(ξ) :=

∫
R

e−iξx ϕ(x)dx (ξ ∈ R)

be the Fourier transform of ϕ, and for χ ∈ L1(R+), let

Lz(χ)(s) :=

∫
R+

e−szχ(z)

be the Laplace transform of χ, which is defined for all s ∈ C such that <(s) ≥ 0. If
f(x, z) = ϕ(x)χ(z) with ϕ ∈ L1(R) and χ ∈ L1(R+), then for all v > 0,

Tf (v, λ) = Fx(ϕ′)(λv)Lz(χ)(λ2v) ∀λ ∈ R. (5.4)

As a consequence, we have:

Proposition 5.2. Assume that f ∈ H can be written f(x, z) = ϕ(x)χ(z) with
ϕ ∈ H1

0 (−L/2, L/2) and χ ∈ H1(0, T ). If f 6= 0, then for all v > 0, the function
λ→ Tf (v, λ) is real analytic on R and not identically zero.

Proof. Since ϕ′ ∈ L1(−L/2, L/2), and since the kernel (x, ξ) 7→ e−iξx is holomorphic
with respect to ξ ∈ R and uniformly bounded for ξ in a compact subset of C and x ∈
[−L/2, L/2], by standard results, the Fourier transform ξ 7→ Fx(ϕ′)(ξ) is holomorphic
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on C (where ϕ′ is extended by 0 on R). The assumptions on f and ϕ imply that
ϕ′ 6= 0; by injectivity of the Fourier transform on L1(R), we have Fx(ϕ′) 6= 0.
Similarly, the Laplace transform s 7→ Lz(χ)(s) is holomorphic on C. If χ ∈ H1(0, T ),
then χ is absolutely continuous on [0, T ], and an inversion formula holds [2]. Thus,
since χ 6= 0 (by assumption), we have Lz(χ) 6= 0. By analycity, Fx(ϕ′) and Lz(χ)
have isolated roots. The conclusion follows from (5.4). �

When RΛ is defined by a numerical integration of the form (2.8), with nodes
1 ≤ λ1 < · · · < λK? ≤ Λ, the maximum stepsize of the subdivision (λk) is defined by

δλmax = max
0≤k≤K?

(λk+1 − λk),

where we have set λ0 = 1 and λK?+1 = Λ. Recall that V h, introduced in Section 4.1,
is the finite dimensional subspace of H obtained by the conforming Q1 discretization.
Let v > 0 be fixed. We can state:

Corollary 5.3. If RΛ is defined by the integral formula (2.7), or by a numerical
integration (2.8) where the maximum stepsize is taken sufficiently small, there exists
a subspace W h ⊂ V h which has a dimension greater than or equal to max{Nx, Nz}−1
and such that RΛ(v, f) > 0 for all f ∈W h \ {0}.

Proof. We assume that Nx ≥ Nz (otherwise we exchange the roles of x and z). We
also assume (by changing the indexing if needed) that the hat-functions e1, . . . , eNx−1

are associated to the first line of interior nodes (xi, z1) with xi = −L/2 + iδx (i =
1, . . . , Nx − 1), z1 = T − δz. Every ei can be written

ei(x, z) = ϕi(x)χ1(z) (5.5)

where

ϕi(x) = ϕ̂

(
x− xi
δx

)
, χ1(z) = ϕ̂

(
z − z1

δz

)
, ϕ̂(s) =


1 + s if s ∈ [−1, 0],

1− s if s ∈ [0, 1],

0 otherwise.

Let W h be the subspace of V h generated by {e1, . . . , eNx−1}, and let f ∈ W h \ {0},
i.e. f(x, z) =

∑Nx−1
i=1 αiei(x, z) with (α1, . . . , αNx−1) 6= (0, . . . , 0). By (5.5),

f(x, z) =

(
Nx−1∑
i=1

αiϕi(x)

)
χ1(z) = ϕ(x)χ1(z), (5.6)

where ϕ ∈ H1
0 (−L/2, L/2), χ1 ∈ H1(0, T ). Using Proposition 5.2, we see that

λ 7→ Tf (v, λ) is real analytic on R and not identically zero. Thus, if RΛ is defined

by the integral formula (2.7), RΛ(v, f) > 0.
Next, assume that RΛ is defined by an numerical integration such as (2.8). We

claim that if the maximum stepsize is sufficiently small, then RΛ(v, f) > 0 for all
f ∈ W h \ {0}. Otherwise, there exist a sequence of subdivisions 1 ≤ λn1 < · · · <
λnKn ≤ Λ with maximum stepsize δλnmax → 0 and fn =

∑Nx−1
i=1 αni ei ∈W h \{0} such

that
RΛ(v, fn) = 0 ⇐⇒ Tfn(v, λnk) = 0 ∀k ∈ {1, . . . ,Kn}. (5.7)

Denote αn = (αn1 , . . . , α
n
Nx−1), and

‖αn‖∞ = max
1≤i≤Nx−1

|αni |.
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Replacing αn by αn/‖αn‖∞ if necessary, we may assume that ‖αn‖∞ = 1. Thus, up
to a subsequence, αn → α in RNx−1, with ‖α‖∞ = 1. The sequence of functions fn

tends in W h to a function f =
∑Nx−1

i=1 αiei 6= 0, which can be represented as in (5.6).
Using Proposition 5.2 again, we obtain that λ 7→ Tf (v, λ) is an analytic function
with isolated zeros in [1,Λ]. On the other hand, passing to the limit in (5.7) shows
that λ 7→ Tf (v, λ) is identically equal to 0 on [1,Λ], yielding a contradiction. The
claim is proved. �

5.2. Optimization with respect to the wave and viscous drag resistance.
In this section we examine the influence of the velocity on the optimization prob-
lem (5.2) for:

ε =
1

2
ρCwU

2 , (5.8)

with a fixed value for the effective viscous drag coefficient: Cw = 10−2, which is a
rather realistic value when considering a streamlined body. Note that all the results
described below depend on the choice Cw, and the bounds of the different regimes
described with respect to the Froude number may be affected if Cw is changed. When
the Froude number (see (5.1)) is large, or when the Froude number is low (in our
case Fr ≤ 0.1 or Fr ≥ 2) we observe that the optimized shapes we obtain are very
similar, and seem to essentially minimize the surface area of the hull (see Figure 4).
For large Froude numbers, the reason is that the wave resistance (which goes to 0
as Fr goes to infinity) is significantly smaller than the viscous resistance, and hence
the optimal hull is close to the optimal hull for the viscous drag resistance, which
depends mainly on the surface area and Fr2. For low Froude numbers, the reason is
not so clear, but in this case, our theoretical resistance is not a good approximation of
the real resistance, due to the limitations of Michell’s wave resistance at low Froude
numbers [6]).

In the intermediate regimes (here Fr ∈ [0.1, 1]) in which the wave resistance
is non-negligible, we observe various hull shapes depending on the length Froude
number (see Figure 5). Here, for Fr close to 0.6 we observe that the optimal hull
features a bulbous bow, very similar to the ones that are usually designed for large
sea ships [14]. For Fr ∈ [1, 2] the optimized hull varies continuously from a form
presenting a small bulbous bow to a shape where the wave resistance is negligible.

Note that this bulbous bow appears for Froude numbers values that usually produce
the largest wave resistance for a standard hull such as the Wigley hull (see Figure 7,
plain line). In Figures 6-7, we observe that the optimized hull for a given velocity
is not optimal for every velocities. A Wigley hull can be a better solution for some
values of Fr. For the comparison, we have used here a Wigley hull with a parabolic
cross section, i.e.

f(x, z) =
B

2
(1− 4x2

L2
)(1− z2

T 2
),

where B is such that

V =

∫ L/2

−L/2

∫ T

0
f(x, z)dxdz =

2

9
BLT = 0.03m3.
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Figure 4. Top row: ship hull optimization for high and low Froude
numbers. Bottom figure: ship hull optimization without wave resis-
tance (optimization of the viscous drag).

6. Conclusion and perspectives

In this paper we presented both a theoretical and numerical framework for the
optimization of ship hull in the case of unrestricted water, in which the Mitchell’s
integral is valid for the prediction of the wave resistance. We have shown the well-
posedness of the problem when adding a regularising term that can be interpreted
physically as a model of viscous resistance. Some numerical calculations have shown
some features predicted in the theoretical work such as the most-likely ill-posedness
of the optimization problem when considering only the wave resistance as our objec-
tive function and the fact that one could reduce the number of degrees of freedom
in our problem by working on the (smaller) space of hulls that produce a non-zero
wave resistance (although an expression of a basis of this space seems a non-trivial).
Further numerical calculations have shown some common features of ship design
such a the use of a bulbous bow to reduce the wave resistance.
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