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RECENT RESULTSON THE PROBLEM OF WAVE-CURRENT INTERACTION
INCLUDING WATER DEPTH, SURFACE TENSION/AMPLITUDE
AND VORTICITY EFFECTS

Philippe Maissh Germain Rousseatiand Yury Stepanyants

Abstract

A brief review on wave—current interaction is preeel. The simplest model of vortical shear flovhe turrent with a
linearly varying velocity with depth is consideradd results obtained are compared with the unifoument case.
Different scenarios of wave blocking depending loe Froude number and other governing parameterter(\dapth,
surface tension, vorticity) are discussed in detdihe weakly nonlinear effects are also taken éotwsideration, while
the majority of presented results were obtainatiénlinear approximation.
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1. Introduction

Coastal processes often feature the combined effettwaves, currents and sediment transport
interacting together. For example, sand rippled@raed due to synergetic effect of waves and custdn
this communication we focus on the interaction leetvwater waves and steady currents inhomogeneous
in space. Surface waves in a coastal zone cangsgrarteract with currents of any nature, suchidalt
wind-generated, produced by oceanic circulatioesiegated by swells or by river inflows, etc. Cutsen
may produce dramatic effects such as rip generatiento wave-bathymetry interaction or rogue waves
generation due to wave-current interaction. Thaveton of basic equations describing wave-current
interaction has quite old history; we can't referdato all publications in this field and indicately few,
the most relevant to the topic (Peregrine, 1976son, 1990; Thomas & Klopman, 1997).

When the flow current varies slowly in space, theimkinematic effects of wave propagation can be
deduced from the dispersion relation between theewieequency and wave number. In the presence of
gradually varying current such dispersion relationtains variable parameters. This allows us gnasttie
essential physical features of wave-current inteyac in particular, the blocking of waves, amptitu
variations or the wavenumber shift. Here, we ndgdrong non-linear effects and back-reaction ovesa
on currents. The present paper represents a swfvegsults on wave-current interaction and aims to
deliver the recent achievements in this field te iroad community of coastal zone oceanographers.
Details of results derivation can be found in tledated bibliography. We will focus mainly on the
interaction between surface water waves and copntgragating currents; in such arrangement theee is
rich variety of non-trivial physical effects. Thaalysis of the dispersion relation leads to thecepaf
parameters where the blocking velocity of the aurie expressed as a function of a period of incgmi
wave (Nardin et al., 2009; Rousseaux et al., 2&Rdlsseaux, 2011). Several plots illustrating oue®of
such analysis are presented below. The effectsritity, water depth and surface tension, as aglfinite
amplitude of waves were taken into considerationi@da et al., 2013).
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2. The physics of wave-current interaction

The first and simplest effect of a current on watares is a shift in the wavenumber. When a wave co
propagates with a current, igvelength increases. This effect is dubbed the redshiftipgialogy with
optics when thgeriod of electromagnetic wave increases due to cerfféote (Doppler effect, or red-shift
effect in cosmology). Analogously, when a wave dewspropagates with a current, it experiences the
blueshifting due to itsvavelength decreases. In addition to that, counter-curremp@gating waves induce
a mode conversion already in the linear approxmmatan incident wave interacting with the current
produces co- and counter propagating waves wifierdiit wavenumbers but with the same frequency in
the immovable coordinate frame. The third effecivafve-current interaction is wave blocking when the
incident wave can be stopped by a sufficientlyrafrourrent. This may happen when the group velagity
a wave defined by the slope of the dispersion imlatanishes and the wave cannot penetrate over the
blocking point. The fourth effect is such that #reergy of incoming wave is not conserved; it cots/arto
other modes. However, it can be shown that the veatien flux is conserved: that is the product afver
energy by the group velocity divided by thebative frequency remains constant. The latter quantity is of
the utmost importance characterizing the physicgakcgsses involved in the wave-current interaction.
Indeed, the relative frequency is the frequencthia coordinate frame co-moving with the fluid (fbe
sake of simplicity we presume here that fluid véloés uniform in depth). One can show that theatot
energy of a sinusoidal wave averaged over a pésipdoportional to the relative frequency. Hencayeas
with positive/negative relative frequency are bfirdéon waves with positive/negative energy (wesube
acronyms PEWs for positive energy waves and NEWsédgative energy waves, see, e.g., Nezlin, 1976;
Ostrovsky et al., 1986; Stepanyants & Fabrikan89l Fabrikant & Stepanyants, 1997).

Here, we will study the conversion of PEWs intoesthPEWs and NEWSs in the presence of dispersive
effects caused by water depth and surface tenamowmell as amplitude and vorticity effects. As thave
energy in the linear approximation is proportiottathe square of the wave amplitude, it is obvithat it
diverges when the wave reaches the wave blockiig piere the group velocity vanishes. Indeed, tdue
conservation of the wave-action flux, the productvave energy and group velocity is constant. Hence
the appearance of freak waves on counter-propapaetirrent in the coastal regions, for example assilg
understood.

Waves on uniform flows were studied since th8 dé&ntury. The first non-trivial dispersion relatinfth
the vorticity effect was derived by Thompson (1948} Biesel (1950) for the shear flow linearly \iagy
with depth:U(2) = Uy + Qz The vorticity in such shear flow is constant agglals toQ. The dispersion
relation for waves in a water layer of deptheads:

2
w=U0k—gtanhkhi\/(g tanhkhj +(gk+1k3j tantkh @)
2 2 Yo
whereg is the acceleration due to gravipyis the surface tension amdis the water density (we presume
that the physical frequency is non-negative qugntithereas the wavenumber may be of either sign,
positive or negative).

During the World War Il, G.I. Taylor studied waves currents with velocity profiles either constant
with depth or linearly varying with depth (both & finite vertical extension) and derived implicit
dispersion relations for such flows (Taylor, 19%Bis work was published after the works of Thompson
and Biesel). The idea was to use pneumatic wavakbre during the D-Day to help in the Normandy ship
“landings” operations. Skop (1987) computed an axipnate dispersion relation for a jet-like flow.r@t
shear flows with rather exotic profiles (e.g., empntially or sinusoidally varying with depth) weaéso
studied in the past (Peregrine, 1976; Jonsson, ;1B8@mas & Klopman, 1997). Recently Karageorgis
derived the implicit dispersion relation for thelo@ty profile of any non-constant vorticity but thithe
constraint that the relationship between the vibytiand stream function is known (Karageorgis, 2012
Figure 1 resumes different velocity profiles forigth the analytical dispersion relations were detive
historically.
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a) b) c) d) e)

Figure 1. Examples of velocity profiles for whidhetdispersion relations were derived in analytitnfoa) — depth-
independent velocity with zero vorticity, b) — péeconstant velocity profile (Taylor-1) with a vaxtsheet at the
interface between layers, c) — linear velocity ieofvith constant vorticity (Thompson, Biesel), €)piece-linear
velocity profile (Taylor-2) with the piece-constartrticity, e) piece-linear velocity profile of atitype (Skop) with the
piece-constant vorticity of opposite sign.

Here, we will carry out the analysis based on tispatsion relation derived by Thompson and Biesel
for linear velocity profile in order to demonstratéh the help of this simplest model the effecwofticity
and compare the results obtained against thoseedefior constant velocity profile without vorticity

3. Outcomes from the dimensional analysis

As it is well known, the dimensional analysis ip@awverful tool to grasp the simple physics behing an
phenomenon. Let us consider water waves of a p@rindhe gravity field with the acceleration congtgn
Water has the densityp and surface tensiop The current flowing opposite to propagating waies
supposed to be either uniform with depth with thastant velocityJ, or linearly varying with depth with
the constant vorticitfQ. The water deptih is assumed to be constant. With the help of theedsional
analysis, the typical blocking velocities can badity derived using either the Vaschy—Buckingham
theorem (Barenblatt, 1996) or balance of termsha dispersion relation (Rousseaux, 2011). These
procedures lead to several velocity scales foibtheking velocityU™ (which is assumed to be negative in
the considering coordinate frame). In a shallowew#te blocking velocity can be expressed as atitumc
of the water depth), = —(gh)*?>, whereas in a deep water it depends only on the wariodUg = g T/877.
Here, both the surface tension and flow vorticigrevneglected.

If we consider waves of relatively short period deep water, then the capillary effects with the
parametery should be taken into account too. Balancing thevity and surface tension terms in the
dispersion relation, one recovers the well-knowiticad velocity U, = —(yg 1p)Y* which corresponds to the
minimum of the phase velocity of gravity-capillamaves. Dimensional analysis allows also to antieipa
the role of a period scaling with {g)*? when interpreting the results in shallow-watetwdepthh.
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Figure 2. The dependence of blocking velocity fug flow of depth-independent profile when the dffeaf surface
tension and vorticity are neglected.
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It is interesting to track the behavior of watervem when meeting an adverse current with a constant
velocity profile. This allows one to shed light orthe blocking effect in terms of successive madiiion
of the dispersion relation. Let us take first ape@ter wave to illustrate the process. As we teaan, the
wave packet can be stopped if it meets a counteectlJ(X) varying in space and achieving the blocking
velocity Uy proportional to the period. In a shallow-water thave packet can be stopped when the
counter-current velocityJ(x) achieves the critical velocity,, depending on the water depth only. The
period of transition is obtained by equatidgandUy, that isT= 8m(h/g)* In the diagram of Figure 2 the
deep-water regime occurs at small periods (aboaght blue line) whereas the shallow-water regime
occurs at large periods (below horizontal purphe)i In the case of waves in a fluid of finite deptthe
boundary between the deep-water and shallow weggmes is given by red line. In the shallow-wateses
it is convenient to determine the wave blockingditan in terms of a critical Froude number=-U |/|Uy|.

When propagating against a counter current, theelgagth keeps decreasing until it reaches typical
lengths in a cascade such as the water depth evéar smaller scales like the capillary length \eheew
dispersive effects will affect the blocking phenomlgy as well as the mode conversion. Here, ongt mu
distinguish between the deep-water or the shallatewasymptotic limits. Indeed, in the shallow wate
limit, the capillary effect is usually a small cection with respect to the water depth effect ipliaption
to coastal zone dynamics. Expanding the dispen@tation into the Taylor series, one can show that
shallow-water the blocking velocity reads (Maissalg 2013):

U = —Jg_hll— o ( Nf”\ﬁ] ] @
g

One recoverdJ, = —(g h)*? in the long-period limit T — ) corresponding to the extreme shallow
regime (see the deviation of red line from the ugsymptote in Figure 2). For even shorter wagiles)
that is for stronger flow current intensity, the wekength reaches eventually a viscous scale where
dissipation strongly affects the waves and evehltaippress them completely. So far we considerdg o
the linear effects. If the flow is sufficiently strg, due to conservation of the wave action thelitune of
wave increases and may modify the dispersion cglair induce wave breaking in extreme regimeshén t
deep water, the phenomenology is more complex dineeeffect of dispersion complicates the mode
conversion as will be shown below. It can be notemlyever, that in the deep-water regime the efféct
surface tension, to a certain extent, is similah®nonlinear effect caused by large-amplitudéupleation;
the corresponding dispersion relation has beengsexh e.g., in the papers (Kirby & Dalrymple, 1986;
Chawla & Kirby, 2002). For surface waves on a depttependent current, the equations read:

(w-U k) = g|k|(l+£k2]: (w-U.k)" = glk|(1+a%k?), )

whereak is the wave steepness, anid the wave amplitude.
4. The mode conversion

Analysis of the dispersion relation can be eastdpalin a graphical representation. In deep-watdr an
without surface tension, one knows since a long tinat four wavenumbers are solutions of the d&per
relation for a constant frequency provided the e#jois given (Peregrine, 1976). Figure 3 illustésthe
dependence of wave frequency against wavenumbea fored flow velocity. As one can see, dashed
horizontal line intercepts four times the dispemsielation (black points in Fig. 3): three timeghwthe
positive green branch and one time with the negalilue branch of the dispersion relation (1). The
condition for wave blocking corresponds to the rnalhgent of the dispersion relation (here, a single
maximum: the purple point in Fig. 3).

Now it is easy to understand the mode conversiongss in the vicinity of the blocking point. Stiyct
speaking, all the four solutions always exist oa Honzero counter current whose velodityc U™, An
incident wave propagating against the current fomnss into a blue-shifted wave staying on the same
positive branch of the dispersion line (see thelblaoint on the top right in the first quadrantrafure 3).
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The process is said to lagiabatic and the slowly varying parameter is the curreatdgally varying in
space.

Figure 4 resumes schematically the mode conversionesses underlining the sign of wave energy
(here the sign corresponds to the fluxes of enamyy direction of group velocity but not to the phas
velocity). For example, the incident wave of pestienergy (PEW) converses into the reflected blue-
shifted PEW whose energy is going backward wheitsasrests propagate in the same direction as the
incident wave. Other mode conversions are alsoilgesssuch as the non-adiabatic one between the
positive and negative branch of the dispersiontimrideading to generation of reflected NEW (veet |
black point in the second quadrant of Figure 3chSmode conversion are well known in electronias fo
example (Kovalev, 1984).

3C}

DN

- 10}

- 20}

Figure 3. The dispersion relation for water wawveaniformly moving fluid in the pure gravity case deep-water. For
the sake of clearness both positive and negatigaches of the dispersion relation are shown, biyt part of the
branches withw= 0 make sense from the physical point of view.
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Figure 4. Mode conversion in the pure gravity casthe blocking point for the PEW and NEW.

The inclusion of a surface tension complicatesotverall picture. Indeed, in the deep water and auith
vorticity, no less than six solutions are possibigh three blocking points. Figure 5 shows how the
dispersion branches evolve when the flow curreoteases. The blue-shifted waves, which are already
present in the pure gravity case, would have Haftk reaching a vanishing wavelength in the nuthcity
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region. To avoid this degeneracy, the capillangtarmplays the role of a regularizing mechanismveilhg
new mode conversions and a new blocking point 2tHerblue-shifted waves (see Figure 5), which are
transformed into capillary waves and which are noramblocked at the former blocking point 1.
Interestingly, the NEW waves are also stoppedravablocking point 3.

Similarly to the pure gravity case, one can pictilme@ mode conversion processes at the new blocking
point 2 or 3 (see Figure 6). For example, the imcidyravity-capillary waves PEW in Figure 6 cormasp
to the reflected gravity PEWSs in Figure 4 albeithaa different velocity. The cascading process ted
double reflection from incident gravity waves todeacapillary waves through blue-shifted waves was
observed experimentally long time ago by Baduliale{1983). One anticipates the same phenomenology
for waves with a finite amplitude in deep-wateryded the only correction of non-linearity is restred
to the dispersion relation since one has shown ttiatcapillary length would be replaced by the wave
amplitude. Conversions into NEW are also possiblanere not displayed in the Figure 6.

AW(SY
40

Blocking Point 3 1
Blogkina Point 1 \

k(m™)
Blc......J Point 2 ‘3‘

- 40

Figure 5. The dispersion relation for the gravigpitlary waves in the deep water. Different linesrespond to
different current velocity of uniform profile. Thebsolute value of the current velocity increasesdiated by the
dashed lines.
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Figure 6. Mode conversion in the case of gravityitary waves at the blocking point 2 for the PEWvdy.
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5. The parameter spaceswith the vorticity effect.

The detailed analysis of the dispersion relatidoved us to construct the parameter spaces for the
blocking phenomenon in terms of the dependencheoftoude number as a function of the wave period,
water depth and vorticity (Maissa et al., 2013)e Melocity scalings deduced from the dimensional
analysis can be treated as the asymptotic behavidriecking lines shown in Figure 7 (red line Irtaes
to the case with zero vorticity) and Figure 8. Hifect of vorticity modifies strongly the asymptstand
the global behavior for long-period waves (see lihee2 in Figure 7 versus red line 1).

FI'b

Deep-water limit

0 / 10 20 30 40 50

W32 T,V/g/h

Figure 7. Froude number for the blocking (indexgdbl phenomenon as a function of dimensionlesoggthe
surface tension effect is neglected). Line 1 —amif flow without vorticity; line 2 — flow with corant vorticity and
a = 1. Horizontal dashed line is the shallow watgmaptoteU;, whenT, - co.

The blocking Froude number (written in terms of seface velocityJo) in the general case of a shear
flow with a constant vorticity is given asymptotigawhen it approaches the limiting value

u, =-.]-9" @)
1-a

by the following formula:

2 7-2/3
ng— ,g_h 1- & ETM , )
1-a 37 \'h 2-a

wherea = Qh/U, — the dimensionless vorticity parameter. In theecaf no vorticity & = 0) this formula
reduces to Eq. (2), and the limiting value of Feudimber in this case is one. This dependencerirstef
Fr, = Uo /(gh)*? is shown in Figure 7 by red line which asymptdtictends to the horizontal dashed line
Fr, = 1 when the wave period infinitely increases.

In another limiting case when the vorticity paraenet = 1 (this corresponds to a shear flow with the
linear vertical profile vanishing at the bottom)g.E(5) is not applicable. In this case the accurate
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consideration for the blocking velocity of surfaitew U leads to following the asymptotic dependence

valid at large periods:
. /\/5 [g
Uy = —Jgh,—,/>T. (6)
0 M3z \Vh

This dependence is shown in Figure 7 by the dditad line. Hence, the blocking Froude number in the
presence of vorticity witlr = 1 is no longer a constant at large periods $tie function of wave period
and water depth.

A particularly interesting feature of gravity-cdpily waves is the possibility for them to penetrate
directly into the region forbidden for pure gravitlaves (Rousseaux et al., 2010; the threshold shoywn
vertical dashed line 5 in Figure 8) avoiding theulle reflection scenario described by Badulin et al
(1983) and studied further by Trulsen & Mei (199Bhe condition for direct penetration does not aepe
on the presence of nonzero vorticity (Maissa ¢2all3).
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Figure 8. The same as in Figure 7 but with theceftd surface tension in deep water. Line 1 is deep-water
asymptoteJg; line 3' is the gravity-capillary asymptdté,

6. Conclusions and per spectives

The problem of interaction between surface watevesaand currents is rather old and classical.
Nevertheless, new results were obtained recentlgxpjoring the dispersion relation. We have presgnt
the dispersive effects of water depth, surfaceis@nsamplitude and vorticity. The existence of rnega
energy waves is a fact often overlooked in coagtatesses. It would be of interest to compare our
theoretical predictions with images of the freefaws in the near shore region and in open oceans fo
which the presence of currents modifies the surfacghness and spectrum. Laboratory experiments in
water channel would quantify the necessary disereipa between our simplified approach and realdvorl
Some other effects, which were ignored so far (eigcosity, strong nonlinearity, influence of iral
waves) should be also taken into consideratiors, ihithe theme for the future work. A more detailed
description of effects presented in this brief syrean be found in our paper (Maissa et al., 2048ich
will be available soon on ArXiv prior to publication a journal.
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