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SPIRAL PATTERN FORMATION IN A SIMPLE
TWO-PHASE FLOW SYSTEM

H. N. YOSHIKAWA®, C. MATHIS, P. MATSSA and G. ROUSSEAUX

Laboratoire J.-A. Dieudonné, UFR 6621 CNRS,
Université de Nice Sophia- Antipolis,
Pare Valrose — 06108 Nice Cedex 2, France, FEuropean Union
* Fomail: Harunori. Yoshikawa@gmail. com

A spiral pattern formation in a gas-liquid two phase flow is investigated ex-
perimentally. Bubbles are injected periodically into a liquid layer with a free
surface and emerge one by one from the surface to exhibit regular arrange-
ments. These arrangements are characterized by a constant angular shift in
the direction of bubble radial motion after the emergence. A transition from
the regime with a shift of 180 degrees to the regime of smaller angles is found.
Observation of bubble behavior shows that the compaction among emerging
elements (bubbles) plays an important role in the pattern formation, as in the
development of regular leaf arrangement around a plant stem, the phyllotaxis.
A theoretical model including the flow advection and the bubble-bubble in-
teraction is developed to get deeper insights into the pattern generation. It is
found the model reproduces different patterns and the transition between the
two regimes.

Keywords: Pattern formation, Phyllotaxis, T'wo-phase flow.

1. Introduction

A simple two-phase flow system in which bubbles are formed by continuous
gas supply through a tube or an orifice is known to be rich in bubble
dynamical behavior."? In the present paper, we report an experimental and
theoretical work on a pattern formation in this two-phase flow system with a
free surface (Fig. 1.1a). Nitrogen gas is injected into a viscous liquid through
an orifice of typically 0.8 mm at the center of the bottom of a vertical
cylindrical tank to form bubbles periodically. The liquid is a silicone oil and
the bubbles have typically a volume-equivalent diameter D, ~ 6 mm. After
their release at the orifice, bubbles rise due to the buoyancy in a regular
chain. This bubble motion induces a jet along the bubble rising path, which
impinges the free surface to make a bump (apex) and is converted into a
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Bump due to the
liquid jet (apex)
~| Nitrogen gas

() (b)

Fig. 1.1. [Illustration of the experimental setup (a) and a typical pattern formed by
bubbles on the free surface (b). The liquid is a silicone oil of 3.5% 1072 m? /s in (b).

diverging surface flow. Bubbles emerge from the apex and are advected
radially by the surface flow.

At small gas flow rate @, emerged bubbles are clustered at the surface
central zone due to the capillary force between bubbles. With increasing
Q, the advection by the surface flow and the frequency of bubble injection,
1/T, become important, where 7' is the period of bubble formation. Each
emerged bubble then moves individually in a radial direction at the sur-
face. The angle of divergence, 1, i.e., the angular shift between the radial
directions of consecutive bubbles, is constant and equal to 180 degrees. In
this distichous regime, a straight arrangement of bubbles is observed on
the surface. Further increase of @ leads to another regime, spiral regime,
where ¢ is a constant smaller than 180 degrees: a spiral arrangement is
formed at the surface, as seen in Fig. 1.1b. The transition between these
two regimes occurs through a supereritical bifurcation (Fig. 1.2a). For a va-
riety of formed spirals and more complete description of the experimental
setup, see Yoshikawa et al.

Spirals that result from a constant angular shift between consecutive ele-
ments are also found in the arrangement of leaves around a plant stem. This
arrangement, called phyllotaris, is known by its mathematical richness and
has attracted scholars by its relation with the golden mean 7 = (\/3 4 ].) /2
and the Fibonacci series. Microscopic observation and surgical experiments
to shoot apexes where leaf primordia are born suggest that the compaction
of the primordia during the meristematic development plays a main role
in the phyllotaxis.* Recent works done in the context of non-linear physics
show that repulsing elements subjected to a geometrical constraint can ex-
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hibit patterns characterized by a constant angular shift between consecutive
elements.’ 7 Transition from the distichous to spiral arrangements is found
when increasing the compaction. Further increase of the compaction leads
to successive quasi-bifurcations. In these quasi-bifurcations, there is only
one route that can be followed continuously from the distichous regime. It
converges to the Fibonacci angle ¢p = 360° /7% = 137.5°, which is regarded
as the most frequently observed angle in natural plants. These results in-
dicate that the phyllotactic pattern formation constitutes a wide class of
pattern formation in different physical and biological systems.

Angle of divergence y (degree)

46 52 54
Bubble injection period T (ms)

(a) (b)

Fig. 1.2.  Behavior of the angle of divergence 1 (a) and successive images showing bubble
behavior at their emergence from the free surface in the spiral regime (b). In (b), the
bubbles are numbered chronologically. The liquid is a silicone oil of 3.5x107% m?/s.

In our two-phase How system, close approach of bubbles occurs in the
apex. Two bubbles are close together at their emergence in the distichous
regime. In contrast, three bubbles are seen together in the spiral regime, e.g.,
(b2) and (b4) in Fig. 1.2. This observation suggests that a formed pattern
is a result of packing of the elements that are subjected to a geometrical
constraint due to the flow stagnation. The behavior of ¢» and the latter
observation suggest that the pattern formation mechanism is similar to
phyllotaxis.

In the next section, we characterize the flow induced by the bubble
ascending motion. Results of velocity field measurements by the Particle
Image Velocimetry (PIV) technique are used to obtain a simple analytical
expression of the flow in the apex and estimate related parameters. We
then develop a theoretical model in Sec. 3. Forces that represent differ-
ent contributions in the pattern formation are balanced in order to con-
struct the model phenomenologically. Numerical simulations of the model
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are presented in Sec. 4. We will see that the model reproduce properly our
experimental observations.

2. Flow and bubble motion

Global flow is induced in the tank by the bubble ascending motion. It
consists of a jet along the center axis, a surface flow and a recirculation.
The jet impinges the free surface and deforms it to yield an apex, as seen
in pictures in Fig. 1.2b. The jet is then converted into the surface flow
diverging from the center. Figure 2.1a shows a velocity field determined
by the PIV technique. The horizontal plane z = 0 is coincident with the
free surface without bump. In the figure, velocity magnitude is shown by
isovalue curves and flow direction is shown by arrows. The liquid is a silicone
oil of a kinematic viscosity ¥ = 3.5x107% m?/s and of a surface tension
v = 0.02 N/m. It is contained in a glass beaker of 130 mm in diameter.
In the measurement, image distortion due to the curvature of the beaker
lateral wall was corrected by use of a square outer tank filled by water. In
the figure, it is seen that a jet of a diameter comparable with the bubble
size is converted into a surface diverging flow. The jet Reynolds number is
around 40. Liquid transported by the surface flow is returned into the bulk
by a recirculation, as illustrated in Fig. 1.1a. The latter is much weaker
than the jet and the surface flow: typically, the velocities of the jet, the
surface flow and the recirculation are of the order of 0.2 m/s, 0.2 m/s and
0.01 m/s, respectively.

Bubbles released at the bottom orifice move in this global flow. They
ascend in a regular chain inside the jet with a constant velocity until the
emergence from the free surface. Relative velocity AU of rising bubbles
to the jet is typically 0.1 m/s, giving the bubble Reynolds number Re, =
AU D, /v of the order of 20. Near the surface, rising bubbles are decelerated
and caught up by followers due to the stagnation of the flow. Close approach
of bubbles then oceurs. The number of bubbles in this approaching event
seems to play an important role in the pattern generation mechanism, as
mentioned to in Sec. 1. It is therefore essential to characterize the flow near
the stagnation point, i.e., 7 = 0 on the free surface.

Near the surface, i.e. z = 0, the jet profile is affected by the boundary
condition at the free surface and by the presence of the apex. In Fig. 2.1b,
the profile of the jet vertical velocity field U. is shown for different vertical
positions. The measurement was done after flow perturbation by a bubble
passage was relaxed. The next rising bubble was far below to influence
the measured flow (its upper surface is at z = —5.4 mm). It is seen in
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Fig. 2.1. Velocity field below the free surface (a) and profiles of vertical velocity at
different vertical positions (b). The liquid is a silicone oil of 3.5x1073 m?/s. The flow
rate of gas injection is 2070 mm?/s.

the figure that the nose of the jet becomes flattened when approaching
to the surface. In the proximity of the center axis, we can develop the
vertical velocity field U, into a power series of r* due to the symmetry:
U, = Vo + Var? 4+ ---. The coefficients V5, Vi,... are functions of z. As
seen in Fig. 2.1b, the velocity at the jet nose Vg decreases linearly with the
vertical position: Vy = —2az+b. The constant a is the radial gradient of the
radial velocity U, at the center. Indeed, use of the continuity equation gives
Ur = —r7! [rUydr = ar + O(r3). The constant b is associated with the
presence of the apex. For the flow in Fig. 2.1b,a = 20s™" and b = 0.19 m/s.
This approximative velocity field will be used to model the bubble behavior
in the apex in the next section.

3. Theoretical model

As discussed earlier, interaction between bubbles moving in the stagnation
flow in the apex seems to be responsible for the observed regular bubble
arrangement on the surface. Taking essential aspects into account, we de-
veloped a theoretical model consisting of the following set of equations of
motion:

dry

= 2mprD, —
0= 2mpv ( 7
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where r; is the j’th bubble’s position. The first term in the equation is the
drag force that represents the advection of bubbles by the flow U. The drag
coefficient 16/ Rey, for a spherical bubble in creeping flow is adopted. The
second term represents the interactions with other bubbles: f;; is the force
exerted by the i'th bubble. The bubble interaction occurs at the moment of
emergence just below the free surface where bubbles approach to their pre-
ceding and succeeding ones in a stagnation flow. We model this interaction
by the Hooke's law: f;; = K (r; — ;) when |r; —r;| < D,; £;; = 0 other-
wise. The third term is the buoyancy force due to the gravity. A correction
to this force after bubbles emerge and the surface tension effect consist the
fourth term §. It gives a vertical force component that pushes bubbles at
the surface downwards.

In the experiment, the angle of divergence ¢ is decided at the emergence
of bubbles. Considering the bubble motion only within the apex, i.e., r =0
and z =~ 0, we suppose the flow velocity field is given by U, = ar and
U. = —2az + b, as discussed in the preceding section. For simplicity, we
will neglect the influence of the apex height and set b = 0 in the model
throughout the present paper.

Nondimensionalizing Eq. (1) with a time scale T and a length scale D,
we get the following coupled ordinary equation set:

Wi AU+ Y (ry=r) HA—lr =i +5(Bo,G)e. (2

d J#i

where H stands for the Heaviside step function. The dimensionless param-
eters A and F represent the advection by the flow and the bubble-bubble
interaction, respectively: A = aT and F' = KT /27pvD,. For the silicone
oil of 3.5%x107° m?/s, the transition from the distichous to spiral regimes
occurs at around T' = 54 ms (see Fig. 1.2a). The parameter a is of the order
of 20 s7!, as shown in Sec. 2. The advection parameter A is hence of the
order of 1 at the transition. In the definition of F', we do not know the exact
nature of the stiffness K. Assuming the repulsive interaction is associated
with the restoration of deformed bubbles due to the capillary pressure, we
could estimate the stiffness by K ~ . It gives a value of the order of unity
to F: we will set F at 0.3 in the present paper. The term S includes the
Bond number Bo = pD?%g/~ and a dimensionless gravity G = gD.T/12v.
We will fix these parameters at their typical experimental values Bo = 17
and G = 7.6.
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4. Results of the simulation of the model

Numerical simulation of the model is carried out by integrating the ordinary
differential equation set (2) with the initial condition that j’th bubble (j =
1,2,...) is injected at z = 2z with a velocity vo: r; = zpe. and dr;/dt = vy
at t = j — 1. The typical values of zy and vy are —3 and 0, respectively.
The fourth-order Runge-Kutta method with a step At = 0.05 was adopted
for the integration. The simulation shows that bubbles can be in contact
and interact with others only when they are emerging from the surface at
a small central zone (r < 1). After going out from this zone, bubbles move
in radial directions with no more interaction with others. We can then
determine the radial direction of each bubble’s motion. Figure 4.1a shows
a typical behavior of the divergence 8; between j'th and (j + 1)’th bubbles
(7 = 1.2,...,100) for A = 0.6. It is seen that the divergence converges to
a constant value after an initial transient phase over around 50 bubbles.
The final value of the divergence, v, is 160 degrees: a spiral arrangement
will be formed on the free surface. In the figure, the number N; of the
bubbles with which the bubble j interacts is also plotted. This number can
be counted by following the positions of all bubbles during the simulation,
without ambiguity because of our hypothesis of a Hooke-type law for the
interaction. While N; takes odd values (3 and then 5) at the beginning,
it converges to the final even value N = 4 after thirty bubbles. Note that
N = 4 means each bubble interacts with two preceding and two succeeding
bubbles. Close approach of three bubbles will be observed in the apex. This
corresponds well to our experimental observation in the spiral regime.
The final value of the divergence, v, depends on the advection parameter
A and the interaction parameter F'. Varying these values, indeed, we can
find that the model can also reproduce the bifurcation from the distichous to
spiral regimes observed in the experiment. Figure 4.1b shows the behavior of
i when the advection parameter A is varied. The interaction parameter F
is fixed as F' = (.3. For large A, the divergence v is equal to 180 degrees and
the system is in the distichous regime. Below a critical value A.,. = 0.66, v
decreases with decreasing A. This behavior is similar to that observed in the
experiment (see Fig. 1.2a), where ¢ decreases with decreasing the bubble
injection period 7'. Furthermore, A, = 0.66 is the same order of magnitude
of the experimentally estimated A (~ 1, see Sec. 2). Further decrease of A
leads to another transition at A = 0.34, where ' starts to increase. This
transition seems similar to the first quasi-bifurcation from the branch (1,
2) to the branch (2, 3), found in the theoretical studies on phyllotactic
pattern formation,”® where (n, m) means the parastichy number often used
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Fig. 4.1.

in the phyllotaxis analysis. In Fig. 4.1b, the interacting bubble number N
is also plotted. For large A, N is equal to 2: each emerging bubble interacts
with its preceding one as well as its succeeding one. This means that, in
the apex, only two bubbles are close together in each interaction. With
decreasing A, the number N jumps to 4: the bubble j interacts with the

Angle of divergence 1 (degree)

Angle of divergence 6, (degree)
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Number of interacting bubbles N,

Number of interacting bubbles N

Behavior of the angle of divergence f; (a) and its final constant valnes 1 for
different advection parameter A (b). The bubble interaction number N; and its final
value N are also shown in these graphs. The interaction parameter F' is fixed at £ = 0.3.
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bubbles j — 2, j — 1, j 4+ 1 and j + 2. However, the interactions with the
bubbles j 4 2 are not strong enough to modify the pattern: it stays in the
distichous mode. The transition to the spiral mode takes place later at a
smaller A(= A.,). when these interactions become effective. This agrees
with the experimental observation that three bubbles are close together in
the apex in the spiral regime. Further decrease of A gives another jump of
N to 6. This precedes the transition from the (1,2) to (2,3) branches: the
latter occurs at 4 = 0.34 when the interactions of the bubble j with the
bubbles j £+ 3 become effective. In the experiment, the branch (2,3) was
not observed: instability of ascending bubble chain® occurs below a certain
value of T = T} before close approach of four bubbles is observed in the
apex (1) = 46 ms in the case of Fig. 1.2a). No regular spiral pattern is
then seen on the surface. As these observations show, the simple model (2)
reproduces essential features of our experiment.

5. Conclusion

We investigated a spiral pattern formation by periodically emerging bub-
bles from a liquid free surface. Experimental observation of bubble behavior
showed that the bubble-bubble interaction in a bump of the surface (apex)
plays an essential role in the formation of pattern. This indicates the anal-
ogy with the meristematic development in a shoot apex of plants resulting
in a regular leaf arrangement. A simple phenomenological model was de-
veloped for our experimental system by taking into account the advection
by the liguid flow and the bubble-bubble interaction, both of which affect
the compaction of bubbles in the apex. Velocity field measurements by the
PIV technique were used to model the flow and estimate the magnitude of
an advection parameter A. Numerical simulation of the model showed that
it reproduced two important observations in the experiment, i.e., the be-
havior of the angle of divergence 7 and the increase of interacting bubbles
in the apex. The eritical value of A agrees favorably with the experimental
estimation.

We are carrying out a further exploration of the model. The parameter
dependence of the system behavior is being investigated over a wide range
of A and F' and different types of interaction force is being examined. Com-
parisons of the model with the experiment are also being tried, including
experimental estimations of the critical A for different liquids with different
viscosities.
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