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In this paper we introduce the electromagnetic quasi-static models in a simple but mean-
ingful way, relying on the dimensional analysis of Maxwell’s equations. This analysis puts
in evidence the three characteristic times of an electromagnetic phenomenon. It allows to
define the range of validity of well-known models, such as the eddy-current (MQS) or the
electroquasistatic (EQS) ones, and thus their pertinence to describe a given phenomenon.
The role of the so-called “small parameters” of a model is explained in detail for two clas-
sical examples, namely a capacitor and a solenoid. We show how the MQS and EQS models
result from having replaced fields by their first order truncations of Taylor expansions with
respect to these small parameters. We finally investigate the connection between quasi-
static models and circuit theory, clarifying the role of the fields with respect to classical
circuit elements, and provide an example of application to study the electromagnetic fields
in a simple case.

© 2012 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Maxwell’s equations (see for example [10]) are fundamental for the description of electromagnetic phenomena and valid
over a wide range of spatial and temporal scales. The static limit of the theory is well defined. The electric and magnetic
fields are given by the laws of Coulomb and Biot–Savart. As soon as there is any time dependence, we should in principle
use the full set of Maxwell’s equations with all their complexity. However, concrete problems in electromagnetism rarely
require the solution of Maxwell’s equations in full generality, because of various simplifications due to the smallness of
some terms [4]. In this work, we try to quantify this smallness by means of a dimensional analysis [2,5] of Maxwell’s
equations. Indeed, some particular models in the low frequency limit, also known as quasi-static range (QS), emerge from
neglecting particular couplings of electric and magnetic field related quantities. Following [12–14], we discuss the fact that
there exists not one but indeed two dual Galilean limits called “electric” or EQS, and “magnetic” or MQS limits, the first
including capacitive effects, the latter inductive effects. A dimensional analysis on the fields allows to emphasize the correct
scaling yielding the two (limit) sets of Maxwell’s equations. By means of detailed mathematical steps for two classical
physical situations, we underline the role in the description of the fields’ amplitude of the “small parameters” resulting
from the dimensional analysis of Maxwell’s equations. We provide simple numerical results on equivalent electric circuits
to support the conclusions on the time-range validity of the considered quasi-static models. In some concrete applications
however, at a certain frequency and for certain configurations of inductors, the separation between inductive and capacitive
effects is not possible (see an example in [6]). In these cases, suitable formulations have then to be designed on the basis
of the ones discussed in this work. The present work aims at proposing a new derivation of some existing quasi-static
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Fig. 1. The area of any triangle T depends on its size and shape which are defined by giving one edge, the largest c, and two angles α, β (for straight
triangles, one angle, say α, is enough as β = 90◦ − α). Thus straight triangles with thick perimeter have area c2 f (α) (left), a2 f (α) (center), b2 f (α) (right),
respectively, with f a non-dimensional function of the angles which are dimensionless quantities too. Divide T into 2 non-overlapping smaller triangles
T1, T2, by using the perpendicular to c as indicated, then area(T ) = area(T1) + area(T2) that yields c2 f (α) = a2 f (α) + b2 f (α). Eliminating f , one gets
c2 = a2 + b2 without never specifying the form of f .

models by means of a dimensional analysis of Maxwell’s equations. Moreover, we provide a condition stated on the basis
of (physical) quantities related to the phenomenon, which allows to identify the mathematical model best suited for its
investigation. To be more precise, the emphasis is put on the following points which cover both mathematical modeling
and numerical validation. In Section 2 we recall the basis of dimensional analysis and we apply it in Section 3 to introduce
the characteristic times for an electromagnetic phenomenon. In Section 4 we recall that the quasi-static models are Galilean
limits of Maxwell’s equations and underline that the field amplitude ratio matters in the selection of a limit. In Section 5,
we scale Maxwell’s equations using non-dimensional quantities naturally related to the previously introduced characteristic
times and amplitude ratios, and state the model to be used according to the scaling. The mathematical part ends in Section 6
with a justification of the parameters introduced so far as the natural ones that appear when performing an asymptotic
analysis of Maxwell’s equations for two classical applications. Finally, in Section 7 we analyze the connection between
quasi-static models and RCL circuits, and a numerical validation of the presented models is proposed in Section 8 together
with some concluding remarks.

2. Dimensional analysis: known concepts

In physics and other sciences, we have to deal with distances or time intervals that, in a Galilean perspective, we are able
to measure, comparing the first with a graduated meter and the second on a suitable clock. When we measure a quantity g
with respect to a unit u we write it as g = gu with g a real number. The surface of a (planar) square with side of size �

with respect to a fixed unit u is a = �2u2. The numbers g , �, are however approximate due to errors in the measurement
process, better if we express the measure of g or of a with respect to another quantity of the same kind chosen as unit. In
this way, we introduce the dimension L of lengths and say that the surface has the dimension of the square of a length by
writing

[a] = [L]2. (1)

The unit of a physical quantity and its dimension are linked, but not identical concepts. The units of a physical quantity are
defined by convention and related to some standard; e.g., length may have units of meters, feet, inches, miles or microm-
eters; but any length always has the dimension of L, independent of what units are arbitrarily chosen to measure it. The
concept of dimension is thus more abstract than that of unit: length is a dimension and meter is a unit u for lengths. If we
change the system of units u for the length setting u′ = λu then the surface in the new system of units becomes a′ = λ−2a
but still [a′] = [L]2. Similarly, for a volume we have [L]3. In the case of angles θ , since their measure is expressed as ratio
between lengths, we have [θ] = [L]0, thus angles have no dimension and the same for all trigonometric functions of angles.
See Fig. 1 for a proof of the Pythagorean theorem in the Euclidean plane on the basis of these few concepts.

The main difficulty in dimensional analysis is the selection of the physical dimensions. First Isaac Newton (1686), who
referred to it as the Great Principle of Similitude, then James Clerk Maxwell (1855) played a major role in establishing
modern use of dimensional analysis by distinguishing mass M , length L, time T and current intensity I as fundamental
quantities, while referring to others as derived (other quantities are also considered as fundamental but will not be involved
in what follows). So, for example, by writing [v] = [M]0[L]1[T ]−1[I]0 we say that speed has the dimension of a length
divided by a time in any possible system of units. The selection of the fundamental dimensions – why the current I instead
of the tension V which is easier to measure? – is a largely discussed subject in the literature and goes beyond the purpose
of the present work.

Another important step is the idea that physical laws, such as force equals mass times acceleration, must be independent
of the units used to measure the involved physical variables, here mass and acceleration. This led to the conclusion that
meaningful laws must be homogeneous equations in their various systems of units, a result which was later formalized
in the Vashy–Buckingham theorem [5]. Indeed, this theorem describes how every physically meaningful equation involving
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Table 1
Parameter units in the MKSA system.

μ ε σ τ �

L 1 −3 −3 0 1
M 1 −1 −1 0 0
T −2 4 3 1 0
I −2 2 2 0 0

n variables can be equivalently rewritten as an equation of n − m dimensionless parameters, where m is the number of
fundamental dimensions used. Furthermore, it provides a method for computing these dimensionless parameters from the
given variables, as we are going to show by an example in the electromagnetic context. Straightforward applications of
this important idea are finding and checking relations among physical quantities by using their dimensions, simplifying a
problem by reducing the number of physical parameters, checking the plausibility and coherence of derived models. In the
present work, we rather focus on the latter.

3. Characteristic times of electromagnetic phenomena

We perform a dimensional analysis of the Maxwell’s equations to put in evidence some characteristic quantities which
allow to define the range of validity of a given model. We consider an electromagnetic phenomenon occurring in space–time
sub-domain of R3 ×R

+ of spatial characteristic length � in a time duration τ . The spatial domain is a continuous medium
with constitutive properties ε , μ, and σ , which are supposed to be constant for simplicity (otherwise they are time and
space dependent tensors). Of course, it may be necessary to subdivide the original domain in sub-domains over which the
electromagnetic parameters are not changing too much. Thus, the following analysis applies for each of such sub-domains.

Three characteristic times, namely τem , τe and τm , appear as soon as we represent τ and � in terms of the fundamental
physical parameters ε , μ and σ . In the MKSA system for example, expressed in terms of mass M (Kg), length L (m), time
T (s) and current I (A), the parameters’ dimensions are

[μ] = [L][M][T ]−2[I]−2,

[ε] = [L]−3[M]−1[T ]4[I]2,

[σ ] = [L]−3[M]−1[T ]3[I]2.

Considering the numerical part of Table 1 as a 4 × 5 matrix, and remarking that the last two columns of the so-defined
matrix contain just one non-zero unitary entry and that the last line is minus twice the second, the matrix rank is 3. Two
parameters (τ and �) can be expressed as functions of three others (μ, ε and σ ). To this purpose, we seek for α, β , γ , c1,
c2, and c3 reals such that the following two ratios are dimensionless:

τ/
(
μαεβσγ

) = O (1), �/
(
μc1εc2σ c3

) = O (1).

The first ratio yields the following linear system⎧⎪⎪⎨
⎪⎪⎩

α − 3β − 3γ = 0,

α − β − γ = 0,

−2α + 4β + 3γ = 1,

−2α + 2β + 2γ = 0

whose solution is α = 0, β = 1, and γ = −1 (the fourth equation coincides with the second one up to a multiplicative
factor −2). We introduce the first quantity τe = ε/σ and we have τ/τe = O (1). Indeed, τe is the electric charge diffusion
time that is the characteristic time during which the simple electric charge decays in a conductor.

For the second ratio, we have to find c1, c2, and c3 solution of a similar linear system with right-hand side equal
to (1,0,0,0)t . We thus get c1 = −1/2, c2 = 1/2, and c3 = −1. We introduce �� = (

√
ε/μ)/σ and we have �/�� = O (1).

Since �/�� = μσ�c = μσ�2(c/�), a natural choice is to set τem = �/c and τm = μσ�2. The quantity τm is the current density
diffusion time that is the characteristic time during which the current density (and hence the magnetic field) penetrates in a
conductor. Its name is due to the fact that Dm = 1/(μσ) is the magnetic diffusion coefficient which has dimension [L]2[T ]−1

and τm = �2/Dm . With these choices, τ 2
em = τeτm , which is the time required for fields to propagate as an electromagnetic

wave from one side to the other of Ω over a distance � at the speed c = 1/
√

εμ. The origin of these waves is the coupling
between the laws of Faraday and Ampère afforded by the magnetic induction and the displacement current. If either one or
the other of these terms is neglected, so too is any electromagnetic wave effect. We note that τ and �, thus the characteristic
velocity |v| = �/τ , are fixed by the problem features. Depending on the physical parameters μ, ε , and σ we specify the
time intervals and thus suitable models from Maxwell’s equations. In particular, in this work we are interested in the set of
equations to be solved in the low frequency limit, that is when |v|/c � 1 and the difficulty is related to the fact that the
quantity |v|/c is not the only indicator that matters, as we are going to explain in the next section.
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4. Quasi-statics with moving media

From now on, quantities with “primes” are related to the moving reference system R′ and those without are related to
the fixed reference system R. Assume that R and R′ have the same origin at t = t′ = 0: the coordinate systems (x, t) and
(x′, t′) are said to be in standard configuration. A Lorentz transformation between R and R′ in standard configuration acts
on space–time coordinates as follows [8]

x′ = γ (x − vt),

t′ = γ

(
t − v · x

c2

)
, γ = 1/

√
1 − |v|2

c2
, (2)

where v is the relative velocity between R′ and R and |v| its modulus. When |v| � c (that yields γ ∼ 1), under the validity
of the causality principle x = |v|t � ct , transformations (2) reduce to Galilean ones

x′ = x − vt, t′ = t. (3)

For the fields, as given by Einstein and Laub in 1908 [7], we have

E ′ = γ (E + v × B) + (1 − γ )
v(v · E)

|v|2 ,

B ′ = γ

(
B − v × E

c2

)
+ (1 − γ )

v(v · B)

|v|2 ,

D ′ = γ

(
D + v × H

c2

)
+ (1 − γ )

v(v · D)

|v|2 ,

H ′ = γ (H − v × D) + (1 − γ )
v(v · H)

|v|2 . (4)

To take the limit for |v| � c is not only sufficient to set γ ∼ 1 in (4). Indeed, one would obtain for example E ′ = E + v × B
and B ′ = B − (v × E)/c2 which do not respect the group composition property. Note that the group composition property
is a key point to understand the validity of a physical transformation and is the mathematical expression of the relativity
principle. Starting from (4) with γ ∼ 1, if e � cb, the term B − (v/c) × (E/c) gives b − (|v|/c)(e/c) ∼ b, thus we get

E ′ = E + v × B, B ′ = B,

D ′ = D + (v × H)/c2, H ′ = H,

ρ ′ = ρ − v · J/c2, J ′ = J . (5)

On the other hand, if e � cb, the two terms (|v|/c) and (e/c) equilibrate each other and have to be kept, whereas
e + |v|b ∼ e and thus we have

E ′ = E, B ′ = B − (v × E)/c2,

D ′ = D, H ′ = H − v × D,

ρ ′ = ρ, J ′ = J − ρv. (6)

Similar transformations for potentials in the two limits and other details can be found in [14]. Note that in the Galilean
regime, we make the assumption that the force F and the charge q are invariant when going from R to R′ , i.e., F ′ = F and
q′ = q. The Lorentz force F ′ = q′E ′ gives F = q(E + v × B) in the magnetic limit and F = qE in the electric.

Constitutive relations as well depend on the considered Galilean limit (this fact was overlooked in [12]). We recall that
in the moving reference R′ , the constitutive relation between B and H reads B ′ = μH ′ . When reported all quantities to R,
in the magnetic limit, one has

H = B/μ, D 	 εE +
(
ε − 1

μc2

)
v × B,

but in the electric limit one should rather use

H 	 B/μ −
(
ε − 1

μc2

)
v × E

c2
, D = εE.

One can be bothered by the presence of c in the above expressions despite we are considering phenomena where |v| � c.
In quasi-static electromagnetism, the appearing velocity is cu = 1/

√
ε0μ0. This velocity is independent of specific units

(same value with Gaussian or SI units) and arises from using only action-at-a-distance forces in which an instantaneous
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propagation is assumed [9]. It can thus be considered as a fundamental constant in nature. We are used to identify cu

with c the speed of light in vacuum because these velocities have the same numerical value. We have to remember that the
speeds cu and c emerge from different physical considerations (Maxwell indeed has been the first one who stated cu = c
in 1862) but we are not going to develop this point here. Note that the Galilean electrodynamics of moving media is still
open to research as many aspects have not been completely understood yet.

5. Limit models of Maxwell’s equations

Let us set the electric field E = eE and B = bB, where e, b are reference quantities (also called electric and magnetic
fields scaling factors) whereas E , B are non-dimensional quantities of order 1. We just recall that in dimensional analysis
the spatial (resp. time) differentiation ∂x E (resp. ∂t E) is equivalent to e

�
∂x′E (resp. e

τ ∂t′E ) where x = �x′ (resp. t = τ t′).
Moreover, we adopt the notation a ∼ b to say that the quantities a and b have the same magnitude order, whereas a 	 b
when a and b are approximatively equal.

The data of an electromagnetic problem are initial and boundary conditions for the fields E and B together with the
sources, namely the charge density ρ and the current density J which are linked by the continuity equation

∂tρ + ∇ · J = 0. (7)

Maxwell’s equations describing the electromagnetic phenomenon read

∇ × E = −∂t B,

∇ × H = ∂t D + J ,

∇ · D = ρ,

∇ · B = 0, (8)

where D = εE , B = μH and J = σ E are the constitutive relations.
We now perform a scaling of the equations based on the characteristic times and amplitude ratios introduced in Sec-

tions 3 and 4. A rather similar analysis was firstly presented in [13]. We thus obtain from Faraday’s law

∇′ × E = − �

τ

b

e
∂t′B. (9)

Thus, the first scaling appears, that is

e ∼ |v|b. (10)

Eq. (9) can also be written as

∇′ × E = −τem

τ

cb

e
∂t′B. (11)

Using similar arguments, from Ampère’s law we get

∇′ ×H = �

τ

d

h
∂t′D + � j

h
J

which becomes, using the constitutive relations,

∇′ × B = �

τ

εμe

b
∂t′E + �μσ e

b
E . (12)

Thus the second scaling appears (assume J = 0 for a moment), that is

b ∼ |v|
c2

e. (13)

Eq. (12) can also be written as either

∇′ × B = τem

τ

e

cb
∂t′E + τm

τem

e

cb
E, (14)

or

∇′ × B = τem

τ

e

cb
∂t′E + τem

τe

e

cb
E . (15)

When |v| ∼ c, the two scalings (10) and (13) are the same. Suppose now that |v| � c, the two scalings are different
and if one replaces the expression of b given in (13) into the expression of e given in (10), we gets |v| ∼ c which is in
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Table 2
Range of the characteristic time τ w.r.t. τem .

Full set of Maxwell’s eq. Quasi-static regime Static regime

0 � τ � τem τem � τ � τm, τe τ � τm, τe

Fig. 2. Case (i) down, and case (ii) up.

contradiction with the starting assumption |v| � c. This means that when |v| � c, the two scalings are not simultaneously
valid, thus the Faraday’s and generalized Ampère’s laws cannot be coupled in certain regimes, and this is what we are going
to detail right below.

Note that comparing |v| to c is the same as comparing τem to τ , since we have |v|/c = τem/τ . Whether we ignore the
magnetic induction and use the EQS approximation, or neglect the displacement current and make a MQS approximation,
times of interest τ must be long compared to the time τem required for an electromagnetic wave to propagate at the
velocity c over the characteristic (largest) length � of the system (see Table 2). Thus, an electromagnetic phenomenon is
considered to happen in the low frequency range if τem/τ < 1 (generally, τem/τ < 0.1 is enough). But looking at Eq. (11)
or (14), we remark that the term τem/τ is multiplied by the quantity e/(cb) that could in principle be much larger than 1
and other terms such as τm/τem , τem/τe have to be taken into account. Table 2 summarizes the different possibilities.
Suppose for example that τem/τ � 1 (generally, τem/τ < (0.1)2 is enough and corresponds to the static regime), then, if
cb/e ≈ τ/τem (thus cb � e), Eqs. (11) and (14) describe the current flow in perfect conductors whereas, if cb/e ≈ τem/τ
(thus cb � e), the same equations allow to describe the electric field in perfect insulators. The more realistic situation
where no perfect materials are present can be described by Eqs. (11) and (14) with cb/e ≈ τm/τem = τem/τe . In this latter
case, cb/e is not strictly related to τ . Three different situations to face:

(i) τm � τem � τe and τem < τ < τe ,
(ii) τe � τem � τm and τem < τ < τm ,

(iii) τm ≈ τem ≈ τe and τem � τ .

For a given characteristic time τ , it is clear from Fig. 2 that the region described by the quasi-static laws is limited in
size. Systems can often be divided into subregions that are small enough to be quasi-static but, by virtue of being linked
through their boundaries, are dynamic in their behavior. With the elements regarded as the subregions, electric circuits are
an example, that we will treat numerically later on. In the physical world of perfect conductors and free space that we
consider here, it is the geometry of the conductors that determines whether these subregions are EQS or MQS.

5.1. Case (i)

Here we have that cb � e and Eq. (11) gives

∇′ × E 	 0.

Note that the condition cb � e is compatible with the scaling (13). Indeed, cb � e with (10) would result in |v|b � cb thus
|v| � c which is in contradiction with the assumption |v| � c.

In case of high frequencies, that is when τ ≈ τe , also the first term in the r.h.s. of (15) is of order 1 and the equations to
be solved are

∇ × E 	 0, ∇ × H = J + ∂t D,

∇ · D = ρ, ∂tρ + ∇ · J = 0, (16)

called the ElectroQuasiStatic equations (EQS). According to the authors’ knowledge, the EQS model has not been yet analyzed
from the mathematical point of view.

In the case of extremely low frequencies, that is when τe � τ , since

e τem ≈ τe
,

cb τ τ
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the first term in the r.h.s. of (15) is negligible w.r.t. the second term and the equations to be solved are

∇ × E 	 0, ∇ × H 	 J ,

∇ · D = ρ, ∇ · B = 0, (17)

called the Quasi-Stationary Conduction (QSC) equations.
In case of low frequencies, that is when τe < τ , depending on whether we neglect or not the first term in the r.h.s.

of (15) w.r.t. the second term, the equations to be solved are the QSC or the EQS ones, respectively.

5.2. Case (ii)

Here, we have cb � e and Eq. (15) gives

∇′ ×H 	 τem

τe

e

cb
J

as the term with the displacement current is negligible. Now, the condition cb � e is compatible with the scaling (10).
Indeed, cb � e with (13) would yield |v| � c which is in contradiction with the assumption |v| � c.

In case of high frequencies, that is when τ ≈ τm , the r.h.s. of (11) is of order 1 and the equations to be solved are

∇ × E = −∂t B, ∇ × H 	 J ,

∇ · B = 0, ∇ · J = 0, (18)

called the MagnetoQuasiStatic (MQS) or eddy-current equations. The MQS model has been analyzed from the mathematical
point of view in [1].

In case of extremely low frequencies, that is when τm � τ , since

cb

e

τem

τ
≈ τm

τ
,

Eq. (11) gives ∇′ × E 	 0 and the QSC equations have to be solved.
In case of low frequencies, that is when τm < τ , depending on whether the r.h.s. of (11) is negligible or not, the equations

to be solved are the QSC or the MQS ones, respectively.

5.3. Case (iii)

Here we have cb ≈ e and τm/τ ≈ τem/τ ≈ τe/τ thus the r.h.s. of (11) and the first term in the r.h.s. of (14) are of the
same order of magnitude. When cb ≈ e the two scalings (10) and (13) coincide.

In case of extremely low frequencies, that is when τm � τ , the situation is that described by the QSC equations.
In case of low frequencies, that is when τm < τ , we can have the QSC situation if we decide to neglect both the r.h.s.

of (11) and the first term in the r.h.s. of (14). Otherwise, the equations to be solved are the full Maxwell’s equations (8)
with (7) but in the case τem < τ (the propagation may still be negligible). This latter case is referred to as the ElectroMag-
neticQuasiStatic (EMQS) model. Darwin model described in [11,15,16] is a variant of case (iii) in the low frequency limit
where we keep only the Coulomb part EC of E in the displacement current, but will be not discussed here (see [15,16] for
the derivation and analysis of the Darwin model, and [11] for physical considerations on this model).

5.4. Visualization

In order to underline the dependence of τm and τe on the length �, it is better to consider a two-dimensional visualiza-
tion, where one axis reflects the effect of τ and the other that of �, as firstly proposed in [3]. We thus consider the plane
(x, y) where x := log(τ/τem) and y := log(�/�∗) and we separate it in sectors by remarking that

τ = τem, log(τ/τem) = log(1) (x = 0),

τ = τe, log(τ/τem) = log
(
�∗/�

)
(y = −x),

τ = τm, log(τ/τem) = log
(
�/�∗) (y = x).

The quasi-static regime, characterized by τem < τ , is located where x > 0 on the plane (x, y) of Fig. 3.

6. The role of the small parameter

In the quasi-static regime, thank to a dimensional analysis of Maxwell’s equations, we have seen that a “small parameter”,
say α = |v|/c, has be compared with others, such as e/(cb). We now develop the mathematical details for two classical cases
(capacitor and solenoid) to show that, on the one hand, α is the natural parameter to express field amplitudes as Taylor
expansions of the form uα = u0 + αu1 + α2u2 + · · · and, on the other hand, the quasi-static models such as EQS or MQS
correspond to a truncation of the Taylor expansion of the fields’ amplitude to 1st order in α.
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Fig. 3. Graphical representation of electromagnetic model validity.

6.1. Capacitor with flat circular electrodes at a forced sinusoidal regime

Let us consider a capacitor with two co-axial circular flat discs as electrodes at a distance d and finite radius a � d.
The capacitor is submitted to a forced sinusoidal regime and electric charges appear on the two discs. The electric field
belongs to the plane P of symmetry of the charge distribution over the capacitor plates. We adopt cylindrical coordi-
nates (r, θ, z) in such a way that the z-axis coincides with the axis of the parallel plates and that the plane z = 0 is in
the gap at distance d/2 from both plates. We compute the field amplitude twice, by solving Maxwell’s equations and by
relying on the perturbation approach. In this configuration, E and B are independent of the rotation angle θ . For E , we
have E(r, z, t) = er(r, z, t)ir + ez(r, z, t)iz and, for B , we can write B(r, z, t) = bθ (r, z, t)iθ , since ∇ × E = ε0∂t E . We note
that

∇ × E = 1

r
(∂θ ez − ∂zeθ )ir + (∂zer − ∂rez)iθ + 1

r

(
∂r(reθ ) − ∂θ er

)
iz = bθ iθ

with bθ very small as er/ez ≈ d/a � 1. In the gap, ρ = 0 thus ∇ · E = 0 which in cylindrical coordinates gives

∇ · E = 1

r
∂r(rer) + 1

r
∂θ eθ + ∂zez = 0.

This yields ez constant function in z, since er � ez , and thus E(r, t) = ez(r, t)iz . As a consequence B(r, t) = bθ (r, t)iθ . Cou-
pling the two equations ∇ × E = −∂t B and ∇ × B = c−2∂t E , the component ez of E verifies the equation

∂rrez + 1

r
∂rez − 1

c2
∂ttez = 0. (19)

Assuming a sinusoidal regime of frequency ω,

E(r, t) = E0 A(r)eiωt iz, B(r, t) = −iE0

ω
A′(r)eiωt iθ

(
A′(r) = dA(r)

dr

)
.

Eq. (19) can be written as A′′(r) + 1
r A′(r) + ω2

c2 A(r) = 0. Let us make the change of variable u = ωr/c (note that u ≈ α),

knowing that dr A(u) = dru du A and that drr A = (ω/c)2 duu A, Eq. (19) becomes

A′′(u) + 1

u
A′(u) + A(u) = 0 (20)

whose solution has the form A(u) = ∑∞
k=0

(−1)k

(k!)2 ( u
2 )2k . We now obtain the same result differently. Let us set E0(r, t) =

ez(r, t)iz = e0(r)eiωt iz . Applying alternatively Ampère’s and Faraday’s laws, we get

E0(r, t) → Ampère → B1(r, t) = e0
iωr

2c2
eiωt iθ ,

B1(r, t) → Faraday → E2(r, t) = −e0
ω2r2

2
eiωt iz,
4c
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E2(r, t) → Ampère → B3(r, t) = −e0
iω3r3

16c4
eiωt iθ ,

B3(r, t) → Faraday → E4(r, t) = e0
ω4r4

64c4
eiωt iz

and so on. Thus E(r, t) = e0[1 − 1
4 (ωr

c )2 + 1
64 (ωr

c )4 · · ·]eiωt iz , which looks like E(r, t) = e0[1 − 1
4 u2 + 1

64 u4 · · ·]eiωt iz =
e0 A(u)eiωt iz , and B(r, t) = ie0

c [ 1
2

ωr
c − 1

16 (ωr
c )3 · · ·]eiωt iθ . At this point, if we truncate the series of E(r, t) and B(r, t) at

the 1st order in u, we get |E/(cB)| ≈ c/(ωr) ≈ τ/τem as obtained in the previous section for the EQS approximation.

6.2. Infinite solenoid at a forced sinusoidal regime

Let us consider a solenoid of height h, with circular windings of radius a � h crossed by a sinusoidal current I of
frequency ω. The magnetic field is orthogonal to the plane P of symmetry of the current distribution in the windings
of the solenoid. We adopt cylindrical coordinates (r, θ, z) in such a way that the z-axis coincides with the axis of the
solenoid and that the plane z = 0 is at distance h/2 from both solenoid extremities. We compute the field amplitude
twice, by solving Maxwell’s equations and by relying on the perturbation approach. In this configuration, E and B are
independent of the rotation angle θ . For B , we can write B(r, t) = bz(r, t)iz since a � h and, for E , we have E(r, t) = eθ (r, t)iθ
since ∇ × E = −∂t B . Coupling the two equations ∇ × E = −∂t B and ∇ × B = c−2∂t E , the component bz of B verifies the
equation

∂rrbz + 1

r
∂rbz − 1

c2
∂ttbz = 0. (21)

Assuming a sinusoidal regime of frequency ω, we can write B(r, t) = b0 A(u)eiωt with A(u) = ∑∞
k=0

(−1)k

(k!)2 ( u
2 )2k and u = ωr/c.

We now go through the perturbation approach, applying once again Ampère and Faraday laws alternatively. Imposing
(∇ × B)θ iθ = c−2∂teθ iθ yields ∂rbz = c−2∂teθ where

∂teθ = −c2∂ru A′(u)b0eiωt = −cωb0 A′(u)eiωt .

We thus get

E(r, t) = − cωb0

iω
A′(u)eiωt iθ = icb0 A′(u)eiωt iθ .

Recalling the expression of A′(u), we obtain

E(r, t) = icb0

[
1

2

ωr

c
− 1

16

(
ωr

c

)3

· · ·
]

eiωt iθ .

At this point, if we truncate the series of E(r, t) and B(r, t) at the 1st order in u, we get |E/(cB)| ≈ (ωr)/c ≈ τem/τ as
obtained in the previous section for the MQS approximation.

To summarize the mathematical steps presented above, in the quasi-static regimes where u = ωr/c � 1 (e.g., if one takes
r = 1 m, we have ω � c/r = 3108 Hz with c = 3108 m/s, and thus f = ω/(2π) � 50 MHz) the Taylor expansion of the
fields’ amplitude truncated at the 1st order in u, we have

capacitor: E(r, t) = e0(r)eiωt iz, B(r, t) = ie0(r)

c

ωr

2c
eiωt iθ ,

solenoid: B(r, t) = b0(r)eiωt iz, E(r, t) = icb0(r)
ωr

2c
eiωt iθ . (22)

Therefore, in the capacitor the electric field prevails since |E/(cB)| ≈ c/(ωr) ≈ τ/τem � 1, whereas in the solenoid the
magnetic field dominates as |E/(cB)| ≈ (ωr)/c ≈ τem/τ � 1, in agreement with the validity ranges of the EQS and MQS
models, respectively.

7. Quasi-static systems as RCL circuits and a numerical example

In [13], the authors develop a connection between the quasi-static models and circuit theory. In this section, we try to
analyze deeply this connection and solve very simple classical numerical examples taking inspiration from [13]. It is well
known that the EQS model, due to the presence of the displacement current, describes capacitance effects whereas the
MQS one, due to the Ampère law, includes inductive effects. To understand this fact we try to clarify the role of the actors
starring in Maxwell’s equations such as B , D , J , . . . with respect to the classical circuit elements such as the resistance R ,
the capacity C and the inductance L.



F. Rapetti, G. Rousseaux / Applied Numerical Mathematics 79 (2014) 92–106 101
Fig. 4. Porous (left) versus elastic (right) medium. The total discharge Q of a fluid through a porous medium is proportional to the pressure drop P2 − P1

(Darcy’s law). The deformation x̄ of an elastic membrane or spring is proportional to the applied force P2 − P1 (Hooke’s law).

Fig. 5. A case where capacitive effects are not negligible: when d � L (here � = L) the electric field between the plates of distance d is intense and the
displacement current ε0∂t E behaves as an additional source of current (courtesy of A. Bossavit [4]).

Fig. 6. A two-dimensional section of an electric circuit with an Ohmic conductor connected to two parallel electrodes. The two black points denote the
intersection between a circular line C going around the conductor out of the electrodes and the plane of the picture. The dashed line is the intersection of
two surfaces, ending in C, with the plane of the picture. Surface S2 (resp. S1) does (resp. does not) contain an electrode.

7.1. The role of R, C and L

Each time there is an energy loss in the considered system, we can compare it to an electric circuit with a resistance R .
The current J flowing in an Ohmic conductor is proportional to the voltage drop at the extremities of the conductor and
causes energy losses due to Joule’s effect. We can thus assimilate an Ohmic conductor to an electric circuit characterized by
a resistance R = �/(Sσ), with � the length, S the cross-section, σ the electric conductivity of the conductor. It is interesting
to remark that the electric charges move in an Ohmic conductor as a viscous fluid in a porous medium (see Fig. 4 (left))
and the difference of voltage V̄ at the extremities of the conductor has the same role as the difference of pressure P2 − P1
which exists at the extremities of the porous medium. The mechanical counterpart of the term containing R in the RCL
circuit equation is the friction term f ẋ proportional to the velocity of the displacement x.

Each time there is an energy accumulation in the system, we can assume the presence of a capacity C in the equivalent
electric circuit. A capacitor works as a spring or an elastic membrane (see Fig. 4 (right)) with elastic coefficient κ . The
mechanical counterpart of the term depending on C in the RCL circuit equation is κx proportional to the displacement x.
The Hooke’s law states that the deformation of the spring or membrane is x̄ = (1/κ)F where F = (P2 − P1)S is the applied
force, where S is the cross-section of the spring or membrane. When F = 0, the membrane is at rest (x̄ = 0), and when
F �= 0, the membrane is deformed thus stocking energy. We remark that the accumulated energy is conserved until the
membrane or spring is not put again in the rest position. Maxwell introduces an electric displacement D for the charges on
the plates of the capacitor which is proportional to the applied force E (= −∇V ) through an electric elastic coefficient ε of
the material between the plates. Analogously to the Hooke’s law, we have D = εE . A similar behavior occurs in dielectric
media, which in absence of an exterior electric field are not polarized and as soon as an exterior electric field is applied,
they present a polarization P �= 0. If x̄ = (1/κ)F is the displacement, then ∂t x̄ = (1/κ)∂t F is the displacement velocity.
Similarly, ∂t D = ε∂t E gives the famous displacement current added by Maxwell to the Ohmic current in Ampère’s law in
order to take into account the capacitive effects of the capacitor.

As explained in [4], for the conductor presented in Fig. 5, the capacitance effects due to the presence of the gap cannot
be neglected. We recall that the difference of voltage is, in the capacitor, V̄ ∼ ed and, in the conductor, V̄ ∼ � j/σ . The ratio
between εe/τ , the current in the gap, and j the current in the conductor, is of order ε/(τσ )(�/d), and thus cannot be
negligible if �/d gets large with ε/(τσ ) ≈ 1. The capacitance of the gap (C = ε/d) cannot be neglected in the computation
when its product with the resistance (R = �/σ ) is ≈ τ .

On the simple example shown in Fig. 6, we understand why the displacement current allows to close the circuit in
presence of electrodes. In the low frequency regime, out of the electrodes, Ampère’s law holds, the electric field is negligible
and |∂t D| � | J |. Thus ∇× H = J . In the gap, we have that | J | = 0 and thus we cannot have |∂t D| � | J |. Indeed, ∇× H = ∂t D .
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Fig. 7. A linear material characterized by constant values of σ , ε , μ, fills in the space between two perfectly conducting plane electrodes of dimensions
� × w and distance d. The plates are connected on the left to a voltage generator and are open on the right.

We know that the circulation of H on a closed line around an electric circuit equals the current I flowing in the circuit. For
the Stokes theorem we have

I =
∮
C

H · t =
∫

S1(C)

∇ × H · n1 =
∫

S2(C)

∇ × H · n2.

Indeed,∫
S1(C)

∇ × H · n1 =
∫

S1(C)

J · n1 = I,

and ∫
S2(C)

∇ × H · n2 = d

dt

∫
S2(C)

D · n2 = I.

Two parallel electrodes are equivalent to an insulator between two conductors. If we modify the voltage between the elec-
trodes, the electric field changes and the electric charges start to move in the conductors without producing a conducting
current in a circuit since the circuit is open at the electrodes. There is a local motion of charges which is called displacement
current related to the polarization of the material filling the gap between the electrodes.

Finally, each time there is a kinetic energy in the system, we can assume the presence of an inductance L in the
equivalent electric circuit. The inductance works differently from a capacitor or a resistance. Once the inductance has been
“charged” in electromagnetic inertia, neither it dissipates the energy as the resistance would do nor it can stock its energy as
a capacitor. Let us compare the expression Lm = 1

2 m|v|2 of the kinetic energy of a mass m at speed |v| to that Le = 1
2 LI2 of

the electromagnetic energy associated to the inductance L in a circuit with a circulating current I . In a mechanical analogy,
we can say that an inductance behaves like an inertial mass. A mass with a kinetic energy is able to move for a moment
even if there is no external force acting on it. The same occurs to the current in an electric circuit when the voltage at
the extremities of the circuit drops down. The current still circulates for a moment in the circuit because of the inductance
giving back to the circuit its electromagnetic inertia. The mechanical counterpart of the term containing L in the RCL circuit
equation is mẍ proportional to the acceleration.

To resume, the RCL circuit equation for an electric circuit fed with a voltage V (t) is

L Ï(t) + R İ(t) + 1

C
I(t) = V̇ (t) (= f .e.m.),

and it looks like the equation mẍ(t) + f ẋ(t) + κx(t) = F (t) of a material point of mass m attached to a spring and moving
in the x-direction with a fluid-type friction pulled out from its rest position by a force F (t). In both cases, V (t) and F (t)
can be sinusoidal functions of the time t .

7.2. An example of application

We consider the test case of Fig. 7. A linear material characterized by constant values of σ , ε , μ, fills in the space
between two perfectly conducting plane electrodes. The two plates are connected on the one side to a sinusoidal voltage
generator with frequency ω (τ = 2π/ω) and to a one-port element on the other side. We neglect the distortion of the fields
at the wedges of the plates and work, for simplicity, in the frequency domain assuming for example that E(z, t) = E(z)eiωt ix

where E(z) is the amplitude of the electric field depending only on the z-coordinate. In the configuration of Fig. 7, we have:
E , D , J ‖ ix and H , B ‖ iy .
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7.2.1. The full model
The equations for the amplitude of the electromagnetic field are

dE

dz
= −iωB, −dH

dz
= J + iωD, (23)

with constitutive relations D = εE , B = μH , J = σ E , and boundary conditions

E(−�) = −V g/d, H(−�) = I g/w,

E(0) = −V e/d, H(0) = Ie/w,

where V e , Ie are respectively the voltage and the current at the end of the plates (z = 0), V g , I g the voltage and the current
at the generator (z = −�). Assuming that V g is known and that z = 0 an open circuit is connected, Ie = 0, only V e and I g
have to be determined. Due to the problem configuration, a voltage between the plates and a current flowing into the plates
can be defined for each value of z as follows:

V (z) = −dE(z), I(z) = H(z)w.

Deriving V w.r.t. z and using the first equation of (23), we have

dV

dz
= iωLI, L = μd

w
, V (−�) = V g .

Deriving I w.r.t. z and using the second equation of (23), we get

dI

dz
= G V + iωC V , G = wσ

d
, C = wε

d
, I(0) = 0.

The quantities L, G , C are, respectively, the inductance, the conductance (G = 1/R) and the capacitance per unit length of
the system in Fig. 7. With second derivation of V w.r.t. z we obtain

d2 V

dz2
− iωL(G + iωC)V = 0, (24)

where the complex constant

γ = √
iωL(G + iωC) = z1 + iz2

is the propagation constant. The real part of the propagation constant (z1) is defined as the attenuation constant while
the imaginary part (z2) is defined as the phase constant. The attenuation constant defines the rate at which the fields of
the wave are attenuated as the wave propagates. An electromagnetic wave propagates in an ideal (lossless) media without
attenuation (z1 = 0). The phase constant defines the rate at which the phase changes as the wave propagates. In particular,
using the definition of G , L, C , we get

γ =
√

−(
ω2με − iωσμ

) = iω
√

με

√
1 − i

1

ωτe
= iγ̃ .

The solution of (24) has the form

V = c1eiγ̃ z + c2e−iγ̃ z, (25)

with the two (real) constants c1 and c2 to be determined by imposing the conditions I(0) = 0 and V (−�) = V g . We get
c1 = c2 = V g/(e−iγ̃ � + eiγ̃ �). For the current we have

I = c1

Z

(
e−iγ̃ z − eiγ̃ z), Z = ωL

γ̃
. (26)

7.2.2. Case (i), the RC model
The equations to be solved are the EQS ones, which for the considered example read

dE

dz
= 0, −dH

dz
= J + iωD, (27)

whose solution is

E(z) = Ẽ, H(z) = −z(σ + iωε)Ẽ (28)

where Ẽ is a constant. Since E is constant, V g = V e . For the current, we get I g = H(−�)w = �w(σ + iωε)
V g
d . The admit-

tance Y of the equivalent circuit is

Y = I

V
= �wσ

d
+ iω

�wε

d
= �G + iω�C .
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Fig. 8. Behavior of the modulus (left column, in Siemens) and argument (right column, in radiant) of the complex number Y = I
V which represents the

frequency response of the equivalent circuit, compared with the true (full) response characterized Y with V and I given in (25) and (26) respectively.
Case (i) is labeled RC, case (ii) RL, case (iii) RCL (the label tem stands for τem). Top figures correspond to τe/τem = 0.10, middle figures to τe/τem = 1, and
bottom ones to τe/τem = 10.

7.2.3. Case (ii), the RL model
The equations to be solved are the MQS ones, which for the considered example are

dE

dz
= −iωB, −dH

dz
= J , (29)

which combined with the constitutive relations yield

d2 H − iωμσ H = 0.

dz
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We now look for γ = z1 + iz2 such that iωμσ = γ 2. By identifying the real and imaginary of the left- and right-hand sides,
we get

γ = (1 + i)

δ
, δ =

√
2

ωμσ
,

where δ is the well-known penetration depth of the magnetic field in the conductor. The solution is

H(z) = c1e−γ z + c2eγ z, I(z) = w H(z), (30)

and

E(z) = γ

σ

(
c1e−γ z − c2eγ z), V (z) = −dE(z). (31)

The two (complex) constants c1 and c2 have to be determined by imposing the boundary conditions I(−�) = I g and I(0) =
Ie = 0. We thus obtain c1 = −c2 and c1 = (I g/w)(eγ � − e−γ �)−1. As a result we get

I(z) = I g
e−γ z − eγ z

eγ � − e−γ �
, V (z) = I g

(
γ d

σ w

)
(e−γ z + eγ z)

(e−γ � − eγ �)
.

Recalling that the following Taylor expansions ex + e−x = 2 + x2 + O (x4) and ex − e−x = 2x + O (x3) hold for |x| � 1, the
impedance Z = 1/Y of the equivalent circuit is (for |γ �| � 1)

Z = V

I
= γ d

wσ

(2 + γ 2�2)

2γ �
= d

wσ�
+ d�γ 2

2wσ
= d

wσ�
+ iω

μd�

2w
= 1

G�
+ iω

L

2
�.

7.2.4. Case (iii), the RCL model
The equations to be solved are (23) which have been solved at the beginning of the section. We are in the case where

τem � τ which implies |β�| � 1. By applying Euler relations (e±ix = cos(x) ± i sin(x)) and Taylor expansions 2 cos(x) =
2 − x2 + O (x4) and 2 sin(x) = 2x + O (x3) when |x| � 1, from (25), (26) we get

Z = iωL

2γ̃ 2�

(
2 − γ̃ 2�2).

8. Numerical results and conclusions

The solution of the full model is compared with that of reduced models for different time-ranges. The parameters used
in the sequel for the numerical simulations are: d = 0.01 m, w = 0.1 m, � = 1 m, ε = ε0, μ = μ0. The conductivity σ has
been varied in order to get different ratios for τem/τe . From the results in Fig. 8 we can observe that when τe/τem � 1 the
model RC provides the correct answer, when τe/τem � 1 the model RL is the more correct one, but neither the RC nor the
RL are correct when τe/τem ≈ 1. The RCL model reproduces correctly the results of the full model (in the case τem/τ � 1)
even when τe/τem ≈ 1, as expected. To make more valid the approximation used to get the equivalent circuit, one could
split the original system into a number of smaller pieces. A cascade of equivalent circuits connected in parallel would give
numerical results which are closer to the ones of the full model.

The focus of this publication is slowly time-varying fields, which can be approximated in the majority of cases by
EQS or MQS fields. The EQS approximation is usually applied to field problems arising from high-voltage technology or
micro-electronics, where capacitive and resistive effects have to be taken into account whereas inductive effects can be
neglected. On the contrary, if inductive and resistive effects have to be considered, the MQS approximation applies. Instances
for this include the design analysis of electrical machines or loss computations in transformers at power frequencies. In
this approximation, capacitive effects are neglected. The applicability of quasi-static approximations for slowly time-varying
electromagnetic fields was investigated using only the characteristic quantities resulting from a dimensional analysis of
Maxwell’s equations. The role of the “small parameters” involved in the analysis has been underlined and the validity of
the models numerically tested in a simple case inspired from [13]. Some open questions remain, such as a mathematical
justification of the EQS model, a physical justification of the Darwin one, that we probably try to address in future work.
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