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We discuss the seminal article by Le Bellac and Lévy-Leblond in which they identified two Galilean
limits �called “electric” and “magnetic” limits� of electromagnetism and their implications. Recent
work has shed new light on the choice of gauge conditions in classical electromagnetism. We show
that the recourse to potentials is compelling in order to demonstrate the existence of both �electric
and magnetic� limits. We revisit some nonrelativistic systems and related experiments, in the light
of these limits, in quantum mechanics, superconductivity, and the electrodynamics of continuous
media. Much of the current technology where waves are not taken into account can be described in
a coherent fashion by the two limits of Galilean electromagnetism instead of an inconsistent mixture
of these limits. © 2007 American Association of Physics Teachers.
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I. INTRODUCTION

The purpose of this article is to emphasize the relevance of
Galilean electromagnetism, recognized in 1973 by Le Bellac
and Lévy-Leblond.1 They observed that there exist not only
one, but two well-defined Galilean limits of electromagne-
tism: the magnetic and electric limits.1 “Galilean” means that
the theory satisfies the principle of relativity in its Galilean
form �also referred to by the somewhat misleading term
“nonrelativistic”�.

We point out that some physical phenomena, often ex-
plained with special relativity, can also be explained by ap-
propriately defined Galilean limits. In other words, such phe-
nomena could have been understood without recourse to
special relativity had the Galilean limits of electrodynamics
been correctly defined. Our purpose is not to argue that these
limits are alternatives to Lorentz-covariant electrodynamics
in the relativistic context, but that some nonrelativistic phe-
nomena are described erroneously by relativistic electrody-
namics �or by nonrelativistic limits not compatible with Gal-
ilean covariance�.

Our general goal is to show that we must be careful when
investigating nonrelativistic limits, and that well-defined
Galilean-covariant theories allow us to describe more nonrel-
ativistic phenomena than is usually believed. The latter point
means that some concepts, which are thought to be purely
relativistic, can actually be understood within the realm of
Galilean physics. An example is given by the concept of
spin.2 Note that when a set of equations is said to be cova-
riant with respect to specific transformations of space-time,
the form of the equations remains the same. Covariance does
not mean invariance of the variables. However, invariance
always implies covariance.

We have summarized and discussed various approaches to
Galilean electromagnetism in a recent article,3 but we have
learned since then of the existence of several studies empha-
sizing the applications of quasistatic regimes in
microelectronics,4 biosystems engineering, medical engineer-
ing, electromagnetic computations,5 and teaching.6 This has
motivated us to expand our earlier investigation along the

lines described in the following paragraph.
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In Sec. II we illustrate some applications of the Galilean
electrodynamics of moving bodies. We then re-examine the
gauge conditions and their compatibility with Lorentz and
Galilean covariance, and emphasize that the use of potentials
is necessary to obtain both Galilean limits, which were only
stated in Ref. 1. Then we comment briefly on the connection
between the two limits and the Faraday tensor �and its dual�.
In Sec. V we discuss Feynman’s proof of the magnetic limit
of the Maxwell equations. Section VI contains a few com-
ments about superconductivity interpreted as analogous to
the Galilean magnetic limit of electromagnetism and dis-
cusses gauge potentials. In Secs. VII and VIII we question
the current understanding of the electrodynamics of moving
bodies by examining the Trouton–Noble experiment in a
Galilean context as well as the introductory example used by
Einstein in his famous work on special relativity. We con-
clude with some comments on the intrinsic use by Maxwell
of both limits, one century before Ref. 1.

II. REVIEW OF GALILEAN ELECTROMAGNETISM

We first briefly review Galilean electromagnetism and set
up the main equations that we use later. A Lorentz transfor-
mation acts on space-time coordinates as follows �see, for
instance, see Ref. 7, Sec. 7.2�:

x� = x − �vt + �� − 1�
v�v · x�

v2 , �1a�

t� = ��t −
v · x

c2 � , �1b�

where v is the relative velocity, and �=1/�1− �v /c�2. When
v�c, Eq. �1� reduces to the Galilean transformation of
space-time:

x� = x − vt , �2a�

t� = − t . �2b�
Because Galilean kinematics involves the time-like condition
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c�t � �x , �3�

there is no other possible limit than the one given in Eq. �2�.
As we shall see, this limit process is not the same for trans-
formations of electric and magnetic fields.

Under the Lorentz transformation in Eq. �1�, the electric
and magnetic fields in vacuum transform as

E� = ��E + v � B� + �1 − ��
v�v · E�

v2 , �4a�

B� = ��B −
1

c2v � E� + �1 − ��
v�v · B�

v2 . �4b�

If we take the limit v /c→0, we find

E� = E + v � B , �5a�

B� = B . �5b�

As we will see shortly, these transformations form a legiti-
mate limit called the magnetic limit of electromagnetism. We
might be tempted to consider the limit �→1, which leads to
the following incorrect transformations:

E� = E + v � B , �6a�

B� = B −
1

c2v � E , �6b�

which is not a valid transformation. In particular, it does not
satisfy the group composition law.1 That is, if we consider a
third reference frame and express E� and B� in terms of E�
and B�, then the ensuing relations between E� and B� in
terms of E and B do not have the form given in Eq. �6�.

However, Eq. �4� allows us to obtain, in addition to Eq.
�5�, another perfectly well-defined Galilean limit. To do so,
we must compare the moduli of the electric field E and the
magnetic field cB, in analogy with Eq. �3�. For large mag-
netic fields, Eq. �4� reduces to the magnetic limit of electro-
magnetism, already given in Eq. �5�:

Em� = Em + v � Bm, �Em � cBm� , �7a�

Bm� = Bm. �7b�

The alternative, for which the electric field dominates, leads
to the electric limit:

Ee� = Ee, �Ee � cBe� , �8a�

Be� = Be −
1

c2v � Ee. �8b�

The approximations Ee /c�Be and v�c together imply that
Ee /v�Ee /c�Be, so that we take Ee�vBe in Eq. �4�.

Clearly, the small v /c approximation is subtle and should
not be confused with neglecting v /c. Moreover, we must be
cautious when referring to “orders of magnitude” or “orders
of approximation” of v /c because, from a group-theoretical
viewpoint, physical theories are either exactly relativistic or
Galilean covariant. But they cannot be Galilean covariant to
some specific order. To illustrate this point, let us consider
the Taylor expansion of the space-time Lorentz transforma-

tion, Eq. �1�, for a boost along the x axis:
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x� = ��x −
v
c

ct� � x −
v
c

ct +
1

2

v2

c2 x −
1

2

v3

c3 ct + ¯ , �9a�

ct� = ��ct −
v
c

x� � ct −
v
c

x +
1

2

v2

c2 ct −
1

2

v3

c3 x + ¯ . �9b�

We can readily check that any transformation to some fi-
nite order does not satisfy the composition law of group
property; that is, the sequence of one boost with velocity v
followed by another boost with velocity v� does not have the
initial form of the transformations, as may be verified to first
order:

x� � x −
v
c

ct , �10a�

ct� � ct −
v
c

x . �10b�

Equation �10� is unlike the Galilean transformation, Eq. �2�,
which does satisfy the composition property of group trans-
formations. �Note that the composition property is also sat-
isfied by Carroll kinematics,8

x� � x , �11a�

ct� � ct −
v
c

x , �11b�

which we will not discuss further, because it entails some
contradiction with the hypothesis of causality.�

Because we will emphasize the use of scalar and vector
potentials �V ,A�, let us consider their transformation proper-
ties. Under a Lorentz transformation, Eq. �1�, they become

A� = A −
�vV

c2 + �� − 1�
v�v · A�

v2 , �12a�

V� = ��V − v · A� . �12b�

When v�c and A�cV, Eq. �12� reduces to the electric limit
of potential transformations:

Ae� = Ae −
vVe

c2 , �13a�

Ve� = Ve. �13b�

The electric and magnetic fields are expressed in terms of the
potentials as follows:

Ee = − �Ve, Be = � � Ae. �14�

Although there exists only one possible condition, Eq. �3�,
for the space-time manifold, we find here a second limit,
obtained by v�c and A�cV, such that Eq. �12� reduces to
the magnetic limit of potential transformations:

Am� = Am, �15a�

Vm� = Vm − v · Am. �15b�

In this limit, the electromagnetic field components are given
by
Em = − �Vm − �tAm, Bm = � � Am. �16�
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Finally, let us recall the two Galilean limits of the Max-
well equations. Their relativistic form is written as

� � E = − �tB, �Faraday� , �17a�

� · B = 0, �Thomson� , �17b�

� � B = �0j +
1

c2�tE, �Ampère� , �17c�

� · E =
1

�0
�, �Gauss� . �17d�

The existence of two Galilean limits is not so obvious if we
naively take the limit c→	. It is stated in Ref. 1 that in the
electric limit, the Maxwell equations reduce to

� � Ee = 0 , �18a�

� · Be = 0, �18b�

� � Be −
1

c2�tEe = �0je, �18c�

� · Ee =
1

�0
�e. �18d�

Clearly, the main difference with the relativistic Maxwell
equations is that here the electric field has zero curl in Fara-
day’s law. In the magnetic limit, the Maxwell equations be-
come

� � Em = − �tBm, �19a�

� · Bm = 0, �19b�

� � Bm = �0jm, �19c�

� · Em =
1

�0
�m. �19d�

The displacement current term is absent in Ampère’s law.
Throughout this article, we will retain the constants �0 and

�0 explicitly. Although they somewhat clutter up the equa-
tions, the existence of two nonrelativistic limits can be traced
back to the possibility of keeping either one of them finite,
while the second one approaches zero. As explained in the
conclusion of Ref. 1, we may understand the magnetic limit
by keeping �0 only, and by writing �0=1/�0c2 where c then
approaches infinity; for the electric limit, we reverse the roles
of �0 and �0.

III. GAUGE CONDITIONS AND GALILEAN
ELECTROMAGNETISM

In this section we use the Riemann–Lorenz formulation of
classical electromagnetism, which is in terms of scalar and
vector potentials instead of fields,9–12 to describe the two
Galilean limits, in contrast to the customary Heaviside–Hertz
approach in terms of the electromagnetic fields. Our purpose
is to examine some implications for Galilean electromagne-

tism.
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Let us recall how the electric and magnetic limits may be
retrieved in this formulation by a careful consideration of
orders of magnitude.3,13 It is natural to define the following
dimensionless parameters:


 	
L

cT
and � 	

j

c�
, �20�

where L, T, j, and � represent the orders of magnitude of
length, time, current density, and charge density, respec-
tively.

The equations of classical electromagnetism in terms of
the potentials are9

�2V −
1

c2

�2V

�t2 = −
�

�0
, �Riemann equations� , �21a�

�2A −
1

c2

�2A

�t2 = − �0j , �21b�

� · A +
1

c2

�V

�t
= 0, �Lorenz equation� , �21c�

d

dt
�mv + qA� = − q � �V − v · A�, �Lorentz force� .

�21d�

with dA /dt=�A /�t+v ·�A, where � applies only to A�r , t�
and not to v=dr /dt.

The quasistatic approximation, 
�1, of Eq. �21� leads to

�2V 
 −
�

�0
and �2A 
 − �0j , �22�

from which we can define a further dimensionless ratio,
cA /V
 j /�c, so that

cA

V

 � . �23�

This dimensionless parameter echoes the prescription of Ref.
1 for the fields: In the magnetic limit, the spacelike quantity
cA is dominant, whereas in the electric limit, it is the time-
like quantity V that dominates.

The definition E=−�tA−�V of the electric field takes dif-
ferent forms in the Galilean limits, depending on the order of
magnitude of each term, because the Galilean transforma-
tions of the potentials differ for the electric and the magnetic
limits.1 Let us evaluate the order of magnitude of the ratio
between the two terms:

��tA�
��V�



�A/T�
�V/L�



L

cT

cA

V

 
� . �24�

In the magnetic limit, for which ��1, Eq. �24� leads to Eq.
�16�. By calculating the curl, we find �tBm=−��Em. Like-
wise, in the electric limit, for which ��1, we can neglect
�tA, so that we obtain Eq. �14�. The curl of this expression
leads to ��Ee
0.

The choice of gauge conditions allows us to retrieve the
two sets of Galilean Maxwell equations in terms of fields, as
in Ref. 1. Moreover, as we now show, the gauge conditions

are closely related to the nature of the kinematic transforma-
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tions. In the magnetic limit, the condition ��1 leads to the
Coulomb gauge condition: � ·Am=0. From the definition of
Bm and the identity

� � �� � A� = ��� · A� − �2A , �25�

we see that

�26�
The last term follows from Eq. �22�. The displacement cur-
rent term is missing. The divergence of the electric field in
the magnetic limit gives

�27�
where we have utilized Eq. �22�. Equation �27� agrees with
Eq. �19d�. In the electric limit, the condition ��1 leads simi-
larly to the Lorenz condition. Proceeding as in the magnetic
limit, we begin with the curl of Be:

�28�

From the divergence of Ee, we find

� · Ee = � · �− �Ve� = − �2Ve =
�e

�0
, �29�

where we have used Eq. �22�.
To summarize the preceding discussion, the choice of a

gauge condition is dictated by the relativistic versus Galilean
nature of the problem. Moreover, we claim that recourse to
the potentials is necessary to demonstrate mathematically the
existence of the Galilean limits which was only stated in Ref.
1. The role of potentials and gauge conditions in quasistatic
regimes was pointed out only recently by Dirks4 and
Larsson,6 although the problem was not handled correctly, as
we have done with the Riemann–Lorenz formulation. In-
deed, both Refs. 4 and 6 use the �erroneous� equation:

�2A −
1

c2

�2A

�t2 = − �0j +
1

c2 �
�V

�t
, �30�

obtained by using the �magnetic Galilean covariant: ��1�
Coulomb gauge condition together with the full set of �Lor-
entz covariant: �
1� Maxwell equations in terms of the
fields without remarking that the temporal terms are negli-
gible compared to the spatial terms because ��1.

The Lorenz gauge condition is compatible in the relativis-
tic context as well as the electric Galilean limit. However,
the Coulomb gauge condition is only compatible with the
Galilean magnetic limit because it is not covariant with re-
spect to either the Lorentz transformations or the Galilean
electric transformations. We refer the interested reader to a
discussion of the physical meaning that can be ascribed to
the various gauge conditions.14

Galilean electromagnetism sheds a new light on the prer-
elativity era. A careful reading of Maxwell’s famous Treatise
on Electricity and Magnetism reveals that he was actually

working with the electric limit in the discussion of dielectric
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materials �see Chaps. II to V�.15 Likewise, in his treatment of
ohmic conductors and induced magnetic fields in Vol. II, the
magnetic limit was employed implicitly, except in the chap-
ters on the theory of light propagation, where he introduced
by hand the displacement current term into the magnetic
limit equations to demonstrate that light is a transverse elec-
tromagnetic wave.15 But, as we have seen in the special case
of the electric limit �and in general in relativity�, the dis-
placement current follows from choosing the Lorenz gauge,
and Maxwell �wrongfully� kept the Coulomb gauge within
the relativistic context for the fields. �For more details, see
Ref. 16.� This problem prompted Hertz and Heaviside to
relinquish potentials and instead cast the Maxwell equations
in terms of fields. Following Hertz’s approach, Einstein sub-
sequently expressed the Maxwell equations in terms of fields
�that is, in the Heaviside–Hertz formulation�, whereas
Poincaré wrote the Maxwell equations in terms of the poten-
tials �that is, the Riemann–Lorenz formulation� by adopting
the Lorenz condition in a relativistic context.16

IV. THE FARADAY TENSOR AND ITS DUAL

In special relativity it is well known that the Faraday ten-
sor

F�� 	 ��A� − ��A�, ��,� = 0,1,2,3� , �31�

and its dual

*F�� =
1

2
����
F�
, �32�

have the same physical meaning. This equivalence is not
valid in Galilean electromagnetism. As pointed out in Ref. 17
and recently discussed by Rynasiewicz,18 the Galilean trans-
formations of the Faraday tensor and its dual tensor lead to
the electric or the magnetic limit, respectively.17 The effect
of the duality operation amounts to exchanging E and B:

E → cB and B → − E/c . �33�

We recover the magnetic and electric limits, Eqs. �7� and �8�,
by applying the duality transformations directly to the elec-
tric transformations of the fields to obtain the magnetic trans-
formations and vice versa.

Earman also noted17 that the field transformations of the
magnetic limit are obtained when E and B are expressed in
terms of covariant or � 0

2
� tensor F��, whereas the electric

limit is obtained when the fields transformations are calcu-
lated by using the contravariant or � 2

0
� tensor F��. Let us

illustrate it briefly with

A� = �V

c
,A�, A� = �V

c
, −A� , �34�

as well as

�� = �1

c
�t,− ��, �� = �1

c
�t,�� . �35�

The magnetic limit follows from the relation

F��� = ��
���


F�
, �36�

where the Galilean transformation matrix ��
� is defined by

�
the four-gradient transformation, ��� =�� ��, so that
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��
� =�1

vx

c

vy

c

vz

c

0 1 0 0

0 0 1 0

0 0 0 1

 . �37�

The index � denotes the line of each entry. We find, for
example,

Ex�

c
= F01� = �0

��1
�F��, �38a�

=
1

c
�Ex + vyBz − vzBy� , �38c�

and

− Bz� = F12� = �1
��2

�F�� = − Bz, �39�

which is Eq. �7�.
The electric limit transformations follows from

F��� = ��
���


F�
. �40�

The transformation matrix ��
� is now defined by the

coordinate transformation, x�=��
� x�, with x�= �ct ,x ,y ,z�,

so that

��
� =�

1 0 0 0

−
vx

c
1 0 0

−
vy

c
0 1 0

−
vz

c
0 0 1


 . �41�

For instance, we calculate

−
Ex�

c
= F�01 = �0

0�1
�F0� = −

Ex

c
, �42�

and

Bz� = − F�12 = − �1
��2

�F��, �43a�

=− �1
0F02 − �2

0F10 − F12, �43b�

=Bz −
1

c2 �vxEy − vyEx� , �43c�

which is Eq. �8�.

V. QUANTUM MECHANICS WITH EXTERNAL
POTENTIALS

In 1990 Dyson published a demonstration of the Maxwell
equations due to Feynman.19 The demonstration dates back
to the 1940s and had remained hitherto unpublished. It was
believed to be incomplete because Feynman considered only
the homogeneous Maxwell equations, given by Eqs. �17a�

and �17b�:
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� � E = − �tB, � · B = 0. �44�

During the 1990s, some authors revisited this demonstration
and noted that the Schrödinger equation admitted external
potentials only if they were compatible with the magnetic
limit1 and, therefore, with the Coulomb gauge condition �see
Refs. 20 and 21 and the references therein�.

From Eq. �19�, it is clear that the homogeneous Maxwell
equations Eq. �44� are valid only within the magnetic limit
because the electric field has zero curl in the electric limit,
Eq. �18�. This validity condition is a consequence of the
Galilean magnetic limit of the four-potential which enters
into the Schrödinger equation. Let us recall the statement
more precisely �more details can be found in Ref. 20�. The
Schrödinger equation with external fields V�x , t� and A�x , t�
is written as

i��t��x,t� =
1

2m
�− i� � − qA�x,t��2��x,t�

+ V�x,t���x,t� . �45�

It is covariant under the Galilean transformation, Eq. �2�,
with

��x,t� → ���x�,t�� = constant

�exp��i/���− mv · x +
1

2
mv2t + ��x,t�����x,t� ,

�46a�

V�x,t� → V��x�,t�� = V�x,t� − �t��x,t�

− v · �A�x,t� + ���x,t�� , �46b�

A�x,t� → A��x�,t�� = A�x,t� + ���x,t� , �46c�

where ��x , t� is a scalar function. For ��x , t�=0, which cor-
responds to pure Galilean boosts, Eq. �46� reduces to the
magnetic limit of Galilean transformations of the potentials,
Eq. �15�. Hence, we can say that Galilean covariance selects
the gauge.

In a subsequent study, Holland and Brown have shown
that the Maxwell equations admit only an electric limit pro-
vided that the source is a Dirac current.22 In addition, they
showed that the Dirac equation admits both Galilean limits,
just like the Maxwell equations, consistent with earlier re-
sults by Lévy-Leblond.2 To summarize, what Feynman did
not �actually, could not� realize is that he had derived only
the part of the Maxwell equations compatible with the Gal-
ilean covariant magnetic limit, that is, the homogeneous
equations.

VI. SUPERCONDUCTIVITY

Superconductivity also enters into the realm of the mag-
netic limit; it selects the Coulomb gauge condition as a nec-
essary consequence of Galilean covariance. As en example,
consider the London equation, which states that the current
density is proportional to the vector potential:23

p = m*v + q*A = 0 . �47�

The star denotes a quantity describing Cooper pairs.23 Equa-
tion �47� implies that there is a perfect transfer of electro-
magnetic momentum to kinetic momentum. Hence, contrary

to what is usually stated, gauge invariance is not broken by
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superconductivity because the Coulomb gauge condition is
implied.24 Moreover, the Meissner effect can be explained by
starting with Ampère’s equation written as ��B=�0j, that
is, without the displacement current term as in the magnetic
case, Eq. �19c�. Hence, this expression �or more directly
�2A
−�0j in the Riemann–Lorenz formulation� together
with � ·A=0 and the London equation, lead to solutions �in
one dimension x� of the type A
exp−�x �where � is a con-
stant�. Hence, the vector potential �and the magnetic field�
only penetrates the superconductor to a depth 1/�.23

We point out that the current density in the magnetic limit
�hence in superconductivity� is divergenceless. By taking the
divergence of

�2A 
 − �0j , �48�

and using � ·A=0, dictated by Galilean covariance, we end
up with � · j=0. The latter does not mean, as is often as-
sumed, that the current is constant in time. Indeed, only the
time derivative of the charge density is negligible with re-
spect to the divergence of the current.3

As a consequence, superconductivity cannot be associated
with a symmetry breaking of gauge invariance but is mag-
netic Galilean covariant. This unusual statement has been
recently advocated by Martin Greiter using a different
approach.24 Note that it is not the whole gauge symmetry, but
the global U�1� phase rotation symmetry that is spontane-
ously violated.

VII. ELECTRODYNAMICS OF CONTINUOUS
MEDIA AT LOW VELOCITIES

In 1904 Lorentz claimed that a moving magnet could be-
come electrically polarized.25 In 1908 Einstein and Laub
noted that the Minkowski transformations for the fields and
the excitations26 predict that a moving magnetic dipole in-
duces an electric dipole moment.27 It is interesting to re-
examine these predictions in light of the Galilean electrody-
namics of continuous media. If we start from the Minkowski
transformations that relate the polarization and the
magnetization,26 we would expect two Galilean limits: one
with M�=M and P�=P−v�M /c2 and the other with M�
=M+v�P and P�=P �Ref. 28, Chap. 9�.

In Ref. 3 we derived the fields transformations in Table I.
In addition, we display the boundary conditions for moving
media in Table II, with n being the unit vector between two
media denoted by 1 and 2, K the surface current, 
 the
surface charge, � the surface separating both media, and vn
the projection of the relative velocity on the normal of �.

Table I. Galilean transformations for the excitations, the fields, and the
sources for both magnetic and electric limits.

Magnetic Limit Electric Limit

B=B� E=E�
�=��+v� j� /c2 �=��
j= j� j= j�+��v
H=H� H=H�+v�D�
E=E�−v�B� D=D�
M=M� P=P�
P=P�+v�M� /c2 M=M�−v�P�
Therefore, as we presumed, the effects in continuous media
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predicted by Lorentz and by Einstein and Laub are not
purely relativistic because they can be described in a Gal-
ilean framework.

VIII. ELECTRODYNAMICS OF MOVING BODIES
AT LOW VELOCITIES

Galilean electromagnetism raises doubts about our current
understanding of the electrodynamics of moving media. For
instance, several experiments �such as the ones by
Roentgen,29 Eichenwald,30 Wilson,31 Wilson and Wilson,32,33

and Trouton and Noble34–37� are generally believed to cor-
roborate special relativity. However, as we will show for the
Trouton–Noble experiment, there is not always a need for
special relativity because the typical relative velocity in these
experiments is much smaller than the speed of light. As we
have emphasized, the Galilean framework must involve the
two limits of electromagnetism. A question that arises is
which of the experiments we have mentioned can be ex-
plained by either the electric limit, the magnetic limit, or a
coherent combination of both.

It is interesting to notice that Carvallo, a notorious antire-
lativist, used both quasistatic limits as early as 1921 to deny
the success of Einstein’s theory of relativity.38 In a sense he
was right when he pointed out that the electrodynamics of
moving bodies at low velocities could be described in a
Galilean-covariant manner by distinguishing the conductors
and dielectrics. However, he was wrong to think that the
optical properties of moving bodies can be described along
the same lines.

The following discussion could be considered to be of
historical interest only, but we claim that the electrodynamics
of moving media requires the use of the Galilean limits in
most laboratory experiments. Because the experimental evi-
dence has been known for a long time, we refer the reader to
history29–37 but with a modern perspective.

A. The Trouton–Noble experiment

Here we explain the Trouton–Noble experiment in a Gal-
ilean context corresponding to an experiment involving ve-
locities well below the speed of light. Unlike the relativistic
approach, our explanation does not assume the existence of a
mechanical torque due to length contraction in order to bal-
ance the electromagnetic force. Moreover, the Galilean treat-
ment is sufficient to describe capacitors that are moving at
low velocities.

The Trouton–Noble experiment—described in the
following—can be thought of as an electromagnetic ana-
logue of the optical Michelson and Morley experiment.34 It
was designed to verify whether it is possible to observe a
mechanical velocity of the ether if the luminiferous medium

Table II. Boundary conditions compatible with the Galilean transformations
for both magnetic and electric limits.

Magnetic Limit Electric Limit

n� �H2−H1�=K n� �E2−E1�=0
n · �B2−B1�=0 n · �D2−D1�=


n · �j2− j1�+�� ·K=0 n · �j2− j1�+�� ·K=�n��2−�1�−�t


n� �E2−E1�=�n�B2−B1� n� �H2−H1�=K+�nn� �n� �D2−D1��
is considered as having parts that can be followed mechani-
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cally. Like the Michelson–Morley optical experiment, the
Trouton–Noble experiment led to a negative result in the
sense that no one was able to detect either an absolute mo-
tion with respect to the ether, or a partial entrainment such as
in the Fizeau experiment.

In 1905 Einstein suggested that the ether was superfluous,
because its mechanical motion was not detected experimen-
tally. Some theorists, such as Poincaré and Lorentz, were
reluctant to relinquish the ether as the bearer of the electro-
magnetic field, despite the fact that they had adopted the
relativity principle. In 1920, at a conference in Leyden, Ein-
stein himself referred to the ether as the medium allowing
the propagation of gravitational waves, although it cannot be
endowed with the characteristics of a material medium.39

Today, even though the ether is a banished word in modern
science, we can use it as did the older Einstein to describe
the vacuum with physical �though not mechanical� proper-
ties.

Before the advent of special relativity, Hertz, Wien, Abra-
ham, Lorentz, Cohn, and others had used the transformations
given in Eq. �6�, which is an incoherent mixture of the elec-
tric and magnetic Galilean limits. As mentioned, these ex-
pressions do not even obey the composition property of
group transformations.

The purpose of the Trouton–Noble experiment was to ob-
serve the effect of a charged capacitor in motion with an
angle � between the plates and the motion through the
ether.34–37 The electric field in the reference frame of the
capacitor generates a magnetic field in the ether frame given
by

B� = −
1

c2v � E , �49�

where v is the absolute velocity. Thus we have

B� =
1

c2vE sin � . �50�

Consequently, there is a localization of magnetic energy den-
sity inside a volume dV:

dW =
1

2

B�

�0
dV =

1

2

v2

c2 �0E2 sin2 �dV . �51�

The volume of the capacitor is S� and the total energy be-
tween the plates is

W =
1

2

v2

c2 �0E2 sin2 �S� . �52�

If we denote the difference of potential between the plates as
V=E /�, then the capacitor is submitted to the electrical
torque

� = −
dW

d�
= −

�0

2

V2S

�

v2

c2 sin 2� , �53�

which is a maximum for �=45°, and zero for �=90°. Hence,
the plates are expected to be perpendicular to the velocity.
However, this effect has not been observed experimentally.

To understand the flaw with this argument, first consider
the electric limit transformation in Eq. �8�. A consequence of
this transformation is that the Biot–Savart law follows from
the Coulomb law associated with the electric transformation

of the magnetic field. In addition, these transformations are
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compatible only with the approximate set of the Maxwell
equations where the time derivative in the Faraday equation
vanishes, as in Eq. �18�.

We can derive the following electric limit approximation
of the Poynting theorem:

�t�1

2
�0E2� + � · �E � B

�0
� 
 − j · E . �54�

This equation shows that the energy density is of electric
origin only. Hence, no electric energy associated with the
motional magnetic field can be taken into account within the
electric limit, because it is of order �v /c�2 with respect to the
static, or quasistatic, electric limit. Thus, the Trouton–Noble
experiment does not show any effect in the electric limit.
Recall that the electric limit is such that the relative velocity
is small compared to the velocity of light c, and the order of
magnitude of the electric field is large compared to the prod-
uct of c and the magnetic field. Of course, special relativity is
needed for larger velocities, and we must take into account
the additional mechanical torque41 due to the length variation
to explain the negative result �that is, no torque�.

In the last paragraph of their 1903 article,35 Trouton and
Noble comment on the source of the negative result being
caused by the fact that they considered the energy of the
motional magnetic field.34–37 They suggested that the energy
of the magnetic field must have had some origin, and that the
electrostatic energy of the capacitor had to decrease by
1/2�0E2v2 /c2 when it is moving with a velocity v at right
angles to its electrostatic lines of force �the electrostatic en-
ergy is 1 /2�0E2�. We may assert that the converse situation
of a solenoid or magnet in motion will not create a motional
magnetic torque because the magnetic energy associated
with the motional electric field is negligible compared to the
magnetic energy of the static, or quasistatic magnetic field.

B. Einstein’s asymmetry

The purpose of this section is to introduce the Einstein
asymmetry and to provide, as far as we know, the first ex-
planation exploiting Galilean kinematics instead of relativis-
tic kinematics. In his famous article on the electrodynamics
of moving media,42 Einstein pointed out the importance of
whether or not we should ascribe energy to the fields when
dealing with motion. In the introduction of Ref. 42 he re-
called that Maxwell’s electrodynamics, when applied to
moving bodies, leads to intrinsic theoretical asymmetries. He
illustrated such an asymmetry with the example of the recip-
rocal electrodynamic action of a magnet and a conductor.
The observable phenomenon depends on the relative motion
of the conductor and the magnet, unlike the traditional view
advocated by Lorentz in which either one or the other of
these bodies is in motion. That is, �1� if the magnet is moving
with the conductor at rest, an electric field is induced in the
neighborhood of the magnet, producing a current where parts
of the conductor are located. �2� If the conductor is in motion
and the magnet at rest, then no electric field arises in the
neighborhood of the magnet. Lorentz argued that the conduc-
tor must contain an electromotive force with no intrinsic en-
ergy, but which causes electric currents similar to those pro-
duced by the electric forces in case �1�, assuming the same
relative motion in the two cases. This dual representation of

the same phenomena was not acceptable to Einstein.

990M. de Montigny and G. Rousseaux



By applying the Lorentz transformation �obtained in the
kinematical analysis of his article� to the Maxwell
equations,43 Einstein replaced Lorentz’s explanation by the
now famous special relativity explanation, valid for all ve-
locities:

1. �Lorentz� If a unit electric point charge is in motion in an
electromagnetic field, there acts on it, in addition to the
electric force, an electromotive force, which if we neglect
the terms multiplied by the second and higher powers of
v /c, is equal to the vector product of the velocity of the
charge and the magnetic force, divided by the velocity of
light.42

2. �Einstein� If a unit electric point charge is in motion in an
electromagnetic field, the force acting on it is equal to the
electric force that is present at the locality of the charge,
and which we determine by transforming the field to a
system of coordinates at rest relative to the electrical
charge.42

Einstein therefore concluded that the analogy is valid with
magnetomotive forces, based on the idea that the electromo-
tive force is merely some auxiliary concept due to the fact
that the electric and magnetic forces are related to the rela-
tive motion of the coordinate system. He then pointed out
that the asymmetry mentioned in the introduction of his ar-
ticle now disappears.

The transformations of the electromagnetic field given by
the Galilean magnetic limit are sufficient to explain Ein-
stein’s thought experiment with the magnet and the conduc-
tor, without recourse to Lorentz covariance.44 The magnetic
Poynting theorem can explain why an energy cannot be as-
cribed to the motional electric field in Einstein’s thought ex-
periment,

�t� B2

2�0
� + � · �E � B

�0
� 
 − j · E , �55�

which is the magnetic analogue of Eq. �54�.
Hence, the second postulate �invariance of the velocity of

light� used by Einstein is not required to explain the thought
experiment. The relativity principle and the magnetic Gal-
ilean transformations are sufficient, together with the fact
that the relative velocity involved in such an experiment is
much smaller than the velocity of light. Hence, in the low-
velocity regime, we propose the following explanation of
Einstein’s asymmetry:

3. If a unit electric point charge is in motion in an electro-
magnetic field, the force acting on it is equal to the elec-
tric force that is present at the locality of the charge. We
determine the force by a Galilean magnetic transforma-
tion of the field to a system of coordinates at rest relative
to the electrical charge.
Einstein was correct in replacing Lorentz’s explanation be-

cause Lorentz thought that the vector product of the velocity
with the magnetic field was not an electric field �which is
why Lorentz called it the electromotive field�. But, because
Ref. 1 was not yet available, Einstein did not notice that the
same vector product was an effective electric field due to a
transformation of the Galilean magnetic limit. Pauli also of-
fered a solution to the asymmetry problem in his textbook on
electrodynamics, but he assumed that his calculations were
only a first order approximation of the relativistic
demonstration.45 He did not acknowledge the existence of

the Galilean magnetic limit.
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To summarize, Einstein’s explanation to remove the asym-
metry is completely valid. However, special relativity is not
necessary to remove it, but only sufficient. It is ironic that the
thought experiment that led Einstein to special relativity
could have been explained by Galilean relativity if the mag-
netic limit had been known by him at that time.

As pointed out by Keswani and Kilminster,46 Maxwell re-
solved Einstein’s asymmetry within the formalism of the
magnetic limit when he stated that for all phenomena related
to closed circuits and the current within them, whether the
coordinate system be at rest or not, is immaterial. In Article
600 of his treatise,15 Maxwell explained that the formula for
the electromotive intensity �in its modern sense and not in
the sense of Lorentz� is of the same type, whether the motion
of the conductors refers to fixed axes or to moving axes,
because the only difference is that for moving axes the elec-
tric potential V becomes V�=V−v ·A. Maxwell claimed that
whenever a current is produced within a circuit C, the elec-
tromotive force is equal to �CE� ·ds, and the value of V
therefore disappears from this integral, so that the term −v ·A
has no influence on its value.15 In a not well-known paper,47

Maxwell clearly formulated the principle of relativity within
the Galilean magnetic limit context: The currents in any sys-
tem are the same, whether the conducting system or the in-
ducing system are in motion, provided the relative motion is
the same.

IX. CONCLUDING REMARKS

One century after the relativity revolution occurred, and
more than thirty years after the work of Lévy-Leblond and
Le Bellac,1 Galilean electromagnetism is becoming a field of
current research, because it allows physicists and engineers
to explain low-energy experiments involving the electrody-
namics of moving media without the formalism of special
relativity.

We have re-examined gauge conditions in connection with
Lorentz and Galilean covariance. After a brief comment on
the two Galilean limits of electromagnetism and the Faraday
tensor, we have recalled the importance of the magnetic limit
in Feynman’s proof of the Maxwell equations as well as in
superconductivity. Finally, we have questioned our current
understanding of the electrodynamics of moving bodies by
examining the Trouton–Noble experiment and the example
used by Einstein in his famous article on special relativity.

For low velocities it is clear that the effects of special
relativity, such as length contraction, cannot explain �as it
was believed� the corresponding experiments because these
effects are negligible. In the realm of mechanics, we might
ask what would have happened if Newton had been born
after Einstein. The situation is somewhat analogous for elec-
tromagnetism.
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