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Abstract A theoretical basis for the possibility to emulate Bose–Einstein conden-
sates (BEC) in a water tank is elaborated. It is shown that the equation governing the
mean-field BEC dynamics, viz., the Gross–Pitaevskii (GP) equation, can be derived
in the same form for surface water waves in a tank with a spatially varying back-
ground current. Depending on the wavenumber of the carrier wave, the GP equation
for the surface waves is tantamount to the GP equation corresponding to the attractive
or repulsive inter-atomic interactions in BEC. The external potential in the effective
GP equation can be easily implemented in the water tank with an uneven bottom
featuring a well or hump. Examples of particular stable exact solutions of the GP
equation with the effective potential are presented. Estimates for physical parameters
of the hydrodynamic setting are given.

1 Introduction

The Bose–Einstein condensation (BEC) has drawn a great deal of attention in course
of the last two decades. The condensate effect was experimentally demonstrated
in various media, including ultracold atomic and exciton-polariton gases, etc. (see,
e.g., Refs. [1–4] and references therein). The use of particular external potentials is a
necessary ingredient of these experiments, which are run in sophisticated setups. On
the other hand, many dynamical matter-wave regimes characteristic to BEC may be
emulated, using simpler equipment, in water-wave tanks. To promote this possibility,
in the present work we demonstrate that the basic mean-field BEC model, known as
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the Gross–Pitaevskii (GP) equation, can be derived for surface water waves in a tank
with a spatially varying current. Depending on the wavenumber of the carrier wave,
the effective GP equation for the surface waves can be made equivalent to the GP
equationwith both attractive and repulsive inter-atomic interactions in BEC. External
potentials in the GP equation for water waves can be easily emulated in the water
tank with an uneven bottom, featuring wells or humps. Particular exact solutions of
the effective GP equation are reported here, and estimates for their realization in the
water tank are given.

2 Derivation of the Effective Gross–Pitaevskii Equations
for Waves on the Surface of Moving Water

FollowingRef. [5], we considerwater-wave propagation on top of a smoothly varying
current along the x-axis, with flow velocity U(x)=U0 +U1(x) including a constant
mean value U0 and a small variable component U1(x), with max[|U1(x)|]/U0 �1
(as shown below, the latter term may be induced by a bottom profile of the tank).
For a counter-current propagating sinusoidal wave of a small but finite amplitude A,
with frequency ω and wavenumber k, the dispersion relation for deepwater in the
laboratory reference frame is [5]

ω � −U (x)k +
√
gk

(
1 + T k2

) (
1 +

A2k2

2

)
, (2.1)

where g is the gravity acceleration, T =σ /ρ g, σ is the surface tension, ρ the water
density, and only the term~ε2 with respect to the wave steepnes, ε =Ak, is retained
in the respective expression for the Stokes’ correction to the wave frequency (see,
e.g., Refs. [6, 7]). It is assumed that spatial scale L of the variation of the external
current is much greater than the wavelength λ =2π /k, which makes it meaningful to
consider the x-dependent frequency in Eq. (2.1). Figure 1 schematically illustrates
the respective configuration of the flow and counter-current propagatingwave packet.

We consider a weakly modulated wavetrain with the central wave number k0 and

frequencyω0 � −U0k0 +
√
gk0

(
1 + T k20

)
. Dispersion relation (2.1) can be expanded

around the point (ω0, k0, A =0) into the Taylor series up to the terms of the order of
ε2 (see Refs. [5, 8, 9])

ω − ω0 � ∂ω

∂k
(k − k0) −U1k0 − 1

2

∂2ω

∂k2
(k − k0)

2 +
∂ω

∂A2
(Ak0)

2, (2.2)

where

∂ω

∂k
� cg

1 + 3T k20√
1 + T k20

−U0,
∂2ω

∂k2
� cg

2k0

(
1 − 3T k20

)2 − 12T 2k40(
1 + T k20

)3/ 2 ,
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Fig. 1 A sketch of the surface wave train propagating against the current in a water tank with a
bottom well

∂ω

∂A2
� cgk0

8

8 + T k20 + 2T 2k40(
1 + T k20

)3/ 2 (
1 − 2T k20

) (Ak0)2,

where cg � (1/2)
√
g0k0 is the group velocity of a purely gravity wave with the

wavenumber k0 on still water, and

ω−ω0 ∼ k−k0 ∼ ε, max [|U1(x)|] /U0 ∼ ε2. (2.3)

(recall that ε�1 is the small wave steepness).
The evolution equation in the (x, t)-space corresponding to dispersion

relation (2.2) can be easily restored by replacing ω – ω0 → i ∂/∂t
and k – k 0 → –i ∂/∂x [5, 10, 11]. Thus we obtain the equation
for a slowly varying in space and time complex amplitude of a wave
train

i

(
∂A

∂t
+ Vg

∂A

∂x

)
� U1(x)k0A − α |A|2 A − β

∂2A

∂x2
, (2.4)

where the group velocity of gravity-capillary waves propagating on top of a current
is

Vg(k0,U0) � cg
1 + 3T k20√
1 + T k20

−U0, (2.5)

and the coefficients in Eq. (2.4) are

α � cgk30
8

8 + T k20 + 2T 2k40(
1 + T k20

)3/ 2 (
1 − 2T k20

) , (2.6a)
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Fig. 2 Intervals of instability (1 and 3) and stability (2) for sinusoidal surface waves

β � 1

2

d2ω

dk2

∣∣∣∣
k�k0

� cg
4k0

(
1 − 3T k20

)2 − 12T 2k40(
1 + T k20

)3/2 . (2.6b)

A similar equation was derived in Ref. [12] for purely gravity waves (the rigorous
derivation of such equation with the help of the asymptotic expansion method can
be found in Rev. [5]).

If we choose for the counter-current propagating wave the speed of the underlying
current such that Vg =0, i.e., U0 =cg (1+3Tk20)/(1+Tk

2
0)

1/2, then we obtain the
standard Gross–Pitaevskii equation [1]

i
∂A

∂t
+ α |A|2 A + β

∂2A

∂x2
−U1(x)k0A � 0, (2.7)

where U1(x) plays a role of the external potential, which is shaped as a well, with
U1(x)<0, and as a hump, with U1(x)>0.

Equation (2.7) without the external potential reduces to the integrable
nonlinear Schrödinger (NLS) equation [7–10]. Depending on coefficients
α and β, cnoidal-wave periodic solutions of the NLS equation can be
stable or unstable against self-modulating perturbations. According to the
Lighthill criterion [7, 9], the stability occurs at αβ <0, and the instabil-
ity takes place at αβ >0. The analysis of coefficients α and β shows
[8, 9] that, in the case of purely gravity waves, both α and β are positive, hence
the sinusoidal wavetrains are unstable, when T k20 < 2/

√
3 − 1 ≈ 0.155. In the

relatively narrow range, 2
√
3/3 − 1 < T k20 < 1/2, the signs are α >0 and β <0,

hence the waves are modulationally stable. Finally, when T k20 > 1/2, both α and
β are negative, hence the cnoidal waves are again modulationally unstable. The
critical wavenumbers, at which coefficients β and α change their signs for clean
water at temperature 25 °C are, respectively, k1 =1.452 cm−1 (λ1 =4.33 cm) and
k2 =2.61 cm−1 (λ1 =2.41 cm). Note that the group velocity in still water, Vg(k, 0),
attains a minimum at the former critical point k1 [7]. At both critical points k1,2,
Eq. (2.7) should be replaced with a more complex equation [5] (we do not consider
such degenerate cases in detail here). Figure 2 shows the intervals of wavenumbers
where the modulational stability and instability occur.

In the next sections we demonstrate that, using various shapes of the bottom well,
one can produce different corrections to the main flow U1(x) in a water tank, via the
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conservation of the flow rate through the tank’s cross-section, U1(x)h1(x)=const.
For some shapes of the bottom well, exact solutions of the effective GP equation can
be constructed both for the repulsive and attractive signs of the nonlinear term. It is
easy to make bottom wells of various shapes in the tank, and trapped surface waves
on top of the corresponding current can be readily observed in the experiment.

3 An Example of Exact Solution of the Effective
Gross–Pitaevskii Equation in the Modulationally
Stable Case

In this section,we demonstrate that one of the basic exact solutions of theGP equation
can be realized in the laboratory experimentwithmodulationally stable surfacewaves
belonging to the interval 2 shown in Fig. 2. To this end, we first assume the presence
of a constant water flow U0 =0.185 m/s in the tank of constant depth h0 =0.45 m.
Figure 3 displays the dispersion relation (2.1) for surface waves of infinitesimal
amplitude (with A =0) and constant current speed U0.

Further, we assume the presence of a shallow well in the central part of the tank’s
bottom, which modifies the total depth so that

h(x) � h0
{
1 + F

[
tanh

( x

�
+ φ

)
− tanh

( x

�
− φ

)]}
, (3.1)

where φ � 1
4 ln

1+ν
1−ν

, � �
√

−6β
νFk0U0

, F >0 and ν being free parameters (0<ν <1),
which control the depth of the cavity and its shape. The largest variation of the depth,
corresponding to Eq. (3.1), is

δh � h(0) − h0 � 2h0F
1 − √

1 − ν2

ν
. (3.2)

The front and rear slopes of the well, �, depend monotonically on parameter ν,
decreasing from infinity to �min � √−6β/ (Fk0U0), when ν varies from 0 to 1.
The characteristic width of the well, L, i.e., the distance between its frontal and rear
segments at the half-maximum level, δh/2, is

L �
√

−6β

νFk0U0
ln

(
2
√
1 − ν2 + 1 +

√
4 − 3ν2 + 4

√
1 − ν2

√
1 − ν2

)
. (3.3)

At ν →0, the well takes the shape of an inverted bell, whose width increases as

1/
√

ν: L ≈
√

−6β
νFk0U0

ln
(
3 +

√
8
)
. In another limit, ν → 1, the well becomes very

wide too, with the width increasing as L ≈
√

−3β
2Fk0U0

ln 2
1−ν

. The minimum width,



96 G. Rousseaux and Y. Stepanyants

(a)

(b)

Fig. 3 The dispersion relation for surface waves with an infinitesimal amplitude. Frame a shows ω

(k) as per Eq. (2.1) with A =0; frame b shows the group velocity in the presence of the underlying
current. Lines 1 and 2 pertain, respectively, to counter-and co-current propagating waves (the group
velocity for the latter branch is not shown). Vertical dashed lines 3 and 6 correspond to the carrier
waves with k0 =2.1 cm−1 and k0 =0.985 cm−1, respectively; dashed lines 4 and 5 show the bound-
aries of the shaded domain where sinusoidal waves are modulationally stable. Line 4 corresponds
to k1, and line 5—to k2, as per Fig. 2

Lmin ≈ 2.2
√

−6β
Fk0U0

, is attained at ν ≈ 0.821. All such shapes can be readily designed
in the experimental setup.

Due to the conservation of the mass flux through any cross-section, the variation
of the depth causes the variation of the speed, therefore, above the bottom well, the
current varies as follows:

U (x) � U0

1 + F
[
tanh

( x
�
+ φ

) − tanh
( x

�
− φ

)] ≈ U0

{
1 − F

[
tanh

( x

�
+ φ

)
− tanh

( x

�
− φ

)]}
,

(3.4)

where the condition F �1 is assumed, hence the effective potential in Eq. (2.7) is

U1(x) � −U0F
[
tanh

( x

�
+ φ

)
− tanh

( x

�
− φ

)]
. (3.5)
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To realize the dynamical regime corresponding to the GP equation with the
self-attraction, we chose a surface mode with wavelength λ0 =3 cm (k0 =2π /λ0

=2.1 cm−1) and amplitude A ≈ 1 mm, hence the corresponding wave steepness, ε

=Ak0 =0.21, may be considered as a small parameter. For such a wave, even in a
relatively shallow section of the tank we have k0h0 =135 � 1, which means that the
deepwater condition is achieved. The absolute value of the group velocity of such
a wave in the absence of the underlying current is Vg(k0, 0)=18.5 cm/s, whereas
the minimal group velocity for given parameters is Vmin =–0.79 cm/s, see Fig. 3b.
An obviously interesting possibility is to observe a “standing water soliton”, i.e., to
bring the wavetrain, traveling counter-current, to a halt in the laboratory frame. To

this end, we set U0 � cg
(
1 + 3T k20

)
/

√
1 + T k20; according to Eqs. (2.5), and (2.6a,

2.6b) this determines the nonlinearity and dispersion coefficients in GP Eq. (2.7): α
=3.348 × 102 cm−2 s−1, β =–1.806 × 102 cm2 s−1.

As has been shown in Ref. [13], the GP equation with the potential given by
Eq. (3.5) admits the exact solution in the form of

A(x, t) � exp (−i�t)

√
νFk0U0

3α

[
tanh

( x

�
+ φ

)
− tanh

( x

�
− φ

)]
, (3.6)

where �=2ν F k0U0/3 is a nonlinear correction to the wave frequency ω0, and the
amplitude of the localized state is

Amax � 2

√
Fk0U0

3αν

(
1 −

√
1 − ν2

)
. (3.7)

The total norm of this solution (which gives a scaled number of atoms in the
application to BEC) is

N �
+∞∫

−∞
|A(x)|2dx � 4νFk0U0�

3α
[2φ coth(2φ) − 1] . (3.8)

The normalized squared absolute value of solution (3.6), corresponding to the
local density of atoms in BEC, along with the normalized potential,U1(x)/(U0F), are
shown in Fig. 4 for several values of free parameter ν. As demonstrated in Ref. [13],
this exact solution is actually the ground state of the GP equation with the repulsive
nonlinearity and potential well (3.5), hence this solution is definitely stable.

Thus, a surface gravity-capillary wave with carrier wavelength λ0 =3 cm can be
trapped in the water flow over the bottom well. If one takes, for example, the value
of the free parameter F =0.15, the largest depth of the well at ν =0.999 is δh ≡ hmax

– h0 =12.9 cm, so that δh/h0 =0.29. The width of the well is L ≈ 53 cm, according
to Eq. (3.2), the envelope of the trapped wavetrain having the same width, see
Fig. 4. The amplitude of the wave is Amax =1.5 mm, hence (k0Amax)2 =0.3, whereas
(|U1(x)/U0|)max =0.29, which agrees with the assumption of the smallnesses of the
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Fig. 4 Normalized solution (3.6) in terms of 3α |A(x)|2/(FU0k0) (lines labeled 1, 2, 3), and the
corresponding normalized potentials U1(x)/(U0F) (lines labeled 1′, 2′, 3′) as functions of dimen-
sionless coordinate ξ =x/�. Lines 1 and 1′ pertain to ν =0.9; lines 2 and 2′ to ν =0.999; lines 3 and
3′ to ν =0.99999

wave steepness and modulation of the basic current, (|U1(x)/U0|)max and ε2 being
of the same order of magnitude, in agreement with Eq. (2.3).

It has been shown in Ref. [13] that there are many other exact stable solutions of
the GP equation with the corresponding potentials, which can be easily realized in a
water tank.

4 An Example of Exact Solution of the Effective
Gross–Pitaevskii Equation in the Modulationally
Unstable Case

We now consider the situation with a small bell-shaped well in the central part of the
tank’s bottom which modifies the depth as [cf. Eq. (3.1), which represented another
well’s profile]

h(x) � h0

[
1 +

F

1 + B cosh(x/�)

]
, (4.1)

where � and B >1 are free parameters, which control the depth and width of the
cavity, and F is a function of �, to be specified below. The maximal variation of
well’s depth is

δh ≡ h(x) − h0 � h0F

1 + B
. (4.2)

where it is assumed that second term in the square brackets is small in comparison
with 1.
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To consider the effective GP equation with the self-attraction, i.e., modulational
instability of the surface wave, we choose it with wavelength λ0 =6.4 cm (k0 =2π /λ0

=0.985 cm−1) and amplitude A ≈ 3.24 mm, so that the wave steepness ε =Ak0
≈ 0.32 may again be treated as a small parameter. For such a wave, even in a
relatively shallow section of the tank we have k0h0 =44.33>>1, which means that
the deepwater approximation remains valid. The group velocity of such a wave in
the absence of the underlying current is the same as in the previous example, viz.,
Vg(k0, 0)=18.5 cm/s, see Fig. 3b. To bring a counter-current traveling wavetrain to
a halt in the laboratory frame (as done above, to produce a “standing water hump”)
we again set U0 =Vg(k0, 0), pursuant to Eq. (2.5). Then Eq. (2.6a, 2.6b) produces
the nonlinearity and dispersion coefficients of GP Eq. (2.7): α =18.6, cm−2 s−1, β
=2.385 × 102, cm2 s−1, and the effective potential,

U1(x) � −U0F

1 + B cosh(x/�)
. (4.4)

It is easy to check that the GP equation with this potential and self-attractive cubic
term has an exact localized solution (a soliton pinned to the potential well) in the
form of

A(x, t) � R exp (−i�t)

1 + B cosh(x/�)
, (4.5)

where �=β /�
2 is a nonlinear correction to the wave frequency ω0, and R and F are

expressed in terms of free parameters B and �:

R � 1

�

√
2β

α

(
B2 − 1

)
, F � −3β

U0k0�2
. (4.6)

The amplitude of this pinned soliton is

Amax � R

1 + B
� 1

�

√
2β

α

B − 1

B + 1
. (4.7)

The stability of this solution was verified in Ref. [13]. The profile of its squared
absolute value, corresponding to the local density of atoms in BEC, along with the
respective normalized potential, U1(x)/(U0b), are shown in Fig. 5 for dimensionless
parameter B =2.5 and �=25 cm.

Thus, we see that the surface gravity wave with the carrier wavelength λ0 =6.4 cm
can be trapped in the water flow over the bottomwell considered here. For the chosen
free parameters B and � we find that the maximal depth of the well is δh ≡ hmax

– h0 =0.8 cm (δh/h0 ≈ 0.018). The number of periods of the carrier wave within
the envelope of the localized trapped mode is 2�/λ0 ≈ 8. The same width has the
envelope of the trapped wave train. The amplitude of the mode is Amax ≈ 1.3 mm,
hence the corresponding wave steepness is ε ≡ k0Amax ≈ 0.13. The largest variation
of the mean flow, induced by the bottom well, is |U1(x)/U0|max ≈ 0.018. This agrees
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Fig. 5 The squared absolute value of solution (4.5) (line 1) and the corresponding normalized
potential U1(x)/(U0) (line 2), as functions of dimensionless coordinate ξ =x/�. The left and right
scales pertains, respectively, to lines 1 and 2

well with our underlying assumptions about the smallnesses of the wave steepness,
and |U1(x)/U0|max ~ε2, see Eq. (2.3).

In the case of purely gravity waves, when the GP equation has the attractive non-
linearity, many other exact solutions with the corresponding potentials are available
[13]; they can be relatively easy realized in the water tank, using the surface waves
with λ >4.3 cm.

5 Conclusion

In this chapter we have shown that surface waves propagating against the external
current, slowly varying in the horizontal direction in deepwater, are governed by
the equation which is tantamount to the GP (Gross–Pitaevskii) equation modeling
the mean-field BEC dynamics. The repulsive or attractive sign of the cubic term
is controlled by the choice of the carrier wavelength of the surface waves, while
the spatial variation of the current plays the role of the external potential in the GP
equation. The current profile can be easily controlled in the experiments by small
variation of bottom profile, so that the corresponding effective potential in the GP
equation can be made in the form of a well or hump. We assume that the free surface
remains flat when water flows around a bottom obstacle which is simplification of
course because the current induces in general a standing free surface perturbation.
But at certain conditions the surface perturbation can be made small.

For some particular bottom profiles the effective GP equation admits exact solu-
tions, which can be experimentally implemented in the water tank with the back-
ground current. Thus, the phenomenon of the Bose–Einstein condensation can be
effectively emulated in relatively simple laboratory setups for water waves. Generat-
ing perturbations with an appropriate carrier wavelength, one can create patterns in
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the form of trapped waves which correspond to pinned states of the GP equation with
local potentials. Our estimates presented in the chapter demonstrate that the param-
eters of bottom profile, background current, and surface waves are quite accessible
to laboratory experiments.

Finally, we note that, formally speaking, in addition to what is elaborated above,
theGP equation can be also implemented in the domain 3 in Fig. 4 for purely capillary
waves with λ <2.4 cm. However, for such short waves water viscosity becomes
important, which would complicate the comparison between the theoretical results
predicted by the GP equation and observations.
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